go-jose – github.com/square/go-jose Index | Examples | Files | Directories

package jose

import "github.com/square/go-jose"

Package jose aims to provide an implementation of the Javascript Object Signing and Encryption set of standards. For the moment, it mainly focuses on encryption and signing based on the JSON Web Encryption and JSON Web Signature standards. The library supports both the compact and full serialization formats, and has optional support for multiple recipients.

Example (JWE)

Code:

{
	// Generate a public/private key pair to use for this example. The library
	// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
	// that can be used to load keys from PEM/DER-encoded data.
	privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		panic(err)
	}

	// Instantiate an encrypter using RSA-OAEP with AES128-GCM. An error would
	// indicate that the selected algorithm(s) are not currently supported.
	publicKey := &privateKey.PublicKey
	encrypter, err := NewEncrypter(A128GCM, Recipient{Algorithm: RSA_OAEP, Key: publicKey}, nil)
	if err != nil {
		panic(err)
	}

	// Encrypt a sample plaintext. Calling the encrypter returns an encrypted
	// JWE object, which can then be serialized for output afterwards. An error
	// would indicate a problem in an underlying cryptographic primitive.
	var plaintext = []byte("Lorem ipsum dolor sit amet")
	object, err := encrypter.Encrypt(plaintext)
	if err != nil {
		panic(err)
	}

	// Serialize the encrypted object using the full serialization format.
	// Alternatively you can also use the compact format here by calling
	// object.CompactSerialize() instead.
	serialized := object.FullSerialize()

	// Parse the serialized, encrypted JWE object. An error would indicate that
	// the given input did not represent a valid message.
	object, err = ParseEncrypted(serialized)
	if err != nil {
		panic(err)
	}

	// Now we can decrypt and get back our original plaintext. An error here
	// would indicate the the message failed to decrypt, e.g. because the auth
	// tag was broken or the message was tampered with.
	decrypted, err := object.Decrypt(privateKey)
	if err != nil {
		panic(err)
	}

	fmt.Printf(string(decrypted))
	// output: Lorem ipsum dolor sit amet
}

Output:

Lorem ipsum dolor sit amet
Example (JWS)

Code:

{
	// Generate a public/private key pair to use for this example. The library
	// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
	// that can be used to load keys from PEM/DER-encoded data.
	privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
	if err != nil {
		panic(err)
	}

	// Instantiate a signer using RSASSA-PSS (SHA512) with the given private key.
	signer, err := NewSigner(SigningKey{Algorithm: PS512, Key: privateKey}, nil)
	if err != nil {
		panic(err)
	}

	// Sign a sample payload. Calling the signer returns a protected JWS object,
	// which can then be serialized for output afterwards. An error would
	// indicate a problem in an underlying cryptographic primitive.
	var payload = []byte("Lorem ipsum dolor sit amet")
	object, err := signer.Sign(payload)
	if err != nil {
		panic(err)
	}

	// Serialize the encrypted object using the full serialization format.
	// Alternatively you can also use the compact format here by calling
	// object.CompactSerialize() instead.
	serialized := object.FullSerialize()

	// Parse the serialized, protected JWS object. An error would indicate that
	// the given input did not represent a valid message.
	object, err = ParseSigned(serialized)
	if err != nil {
		panic(err)
	}

	// Now we can verify the signature on the payload. An error here would
	// indicate the the message failed to verify, e.g. because the signature was
	// broken or the message was tampered with.
	output, err := object.Verify(&privateKey.PublicKey)
	if err != nil {
		panic(err)
	}

	fmt.Printf(string(output))
	// output: Lorem ipsum dolor sit amet
}

Output:

Lorem ipsum dolor sit amet

Index

Examples

Constants

const (
	RSA1_5             = KeyAlgorithm("RSA1_5")             // RSA-PKCS1v1.5
	RSA_OAEP           = KeyAlgorithm("RSA-OAEP")           // RSA-OAEP-SHA1
	RSA_OAEP_256       = KeyAlgorithm("RSA-OAEP-256")       // RSA-OAEP-SHA256
	A128KW             = KeyAlgorithm("A128KW")             // AES key wrap (128)
	A192KW             = KeyAlgorithm("A192KW")             // AES key wrap (192)
	A256KW             = KeyAlgorithm("A256KW")             // AES key wrap (256)
	DIRECT             = KeyAlgorithm("dir")                // Direct encryption
	ECDH_ES            = KeyAlgorithm("ECDH-ES")            // ECDH-ES
	ECDH_ES_A128KW     = KeyAlgorithm("ECDH-ES+A128KW")     // ECDH-ES + AES key wrap (128)
	ECDH_ES_A192KW     = KeyAlgorithm("ECDH-ES+A192KW")     // ECDH-ES + AES key wrap (192)
	ECDH_ES_A256KW     = KeyAlgorithm("ECDH-ES+A256KW")     // ECDH-ES + AES key wrap (256)
	A128GCMKW          = KeyAlgorithm("A128GCMKW")          // AES-GCM key wrap (128)
	A192GCMKW          = KeyAlgorithm("A192GCMKW")          // AES-GCM key wrap (192)
	A256GCMKW          = KeyAlgorithm("A256GCMKW")          // AES-GCM key wrap (256)
	PBES2_HS256_A128KW = KeyAlgorithm("PBES2-HS256+A128KW") // PBES2 + HMAC-SHA256 + AES key wrap (128)
	PBES2_HS384_A192KW = KeyAlgorithm("PBES2-HS384+A192KW") // PBES2 + HMAC-SHA384 + AES key wrap (192)
	PBES2_HS512_A256KW = KeyAlgorithm("PBES2-HS512+A256KW") // PBES2 + HMAC-SHA512 + AES key wrap (256)
)

Key management algorithms

const (
	HS256 = SignatureAlgorithm("HS256") // HMAC using SHA-256
	HS384 = SignatureAlgorithm("HS384") // HMAC using SHA-384
	HS512 = SignatureAlgorithm("HS512") // HMAC using SHA-512
	RS256 = SignatureAlgorithm("RS256") // RSASSA-PKCS-v1.5 using SHA-256
	RS384 = SignatureAlgorithm("RS384") // RSASSA-PKCS-v1.5 using SHA-384
	RS512 = SignatureAlgorithm("RS512") // RSASSA-PKCS-v1.5 using SHA-512
	ES256 = SignatureAlgorithm("ES256") // ECDSA using P-256 and SHA-256
	ES384 = SignatureAlgorithm("ES384") // ECDSA using P-384 and SHA-384
	ES512 = SignatureAlgorithm("ES512") // ECDSA using P-521 and SHA-512
	PS256 = SignatureAlgorithm("PS256") // RSASSA-PSS using SHA256 and MGF1-SHA256
	PS384 = SignatureAlgorithm("PS384") // RSASSA-PSS using SHA384 and MGF1-SHA384
	PS512 = SignatureAlgorithm("PS512") // RSASSA-PSS using SHA512 and MGF1-SHA512
)

Signature algorithms

const (
	A128CBC_HS256 = ContentEncryption("A128CBC-HS256") // AES-CBC + HMAC-SHA256 (128)
	A192CBC_HS384 = ContentEncryption("A192CBC-HS384") // AES-CBC + HMAC-SHA384 (192)
	A256CBC_HS512 = ContentEncryption("A256CBC-HS512") // AES-CBC + HMAC-SHA512 (256)
	A128GCM       = ContentEncryption("A128GCM")       // AES-GCM (128)
	A192GCM       = ContentEncryption("A192GCM")       // AES-GCM (192)
	A256GCM       = ContentEncryption("A256GCM")       // AES-GCM (256)
)

Content encryption algorithms

const (
	NONE    = CompressionAlgorithm("")    // No compression
	DEFLATE = CompressionAlgorithm("DEF") // DEFLATE (RFC 1951)
)

Compression algorithms

Variables

var (
	// ErrCryptoFailure represents an error in cryptographic primitive. This
	// occurs when, for example, a message had an invalid authentication tag or
	// could not be decrypted.
	ErrCryptoFailure = errors.New("square/go-jose: error in cryptographic primitive")

	// ErrUnsupportedAlgorithm indicates that a selected algorithm is not
	// supported. This occurs when trying to instantiate an encrypter for an
	// algorithm that is not yet implemented.
	ErrUnsupportedAlgorithm = errors.New("square/go-jose: unknown/unsupported algorithm")

	// ErrUnsupportedKeyType indicates that the given key type/format is not
	// supported. This occurs when trying to instantiate an encrypter and passing
	// it a key of an unrecognized type or with unsupported parameters, such as
	// an RSA private key with more than two primes.
	ErrUnsupportedKeyType = errors.New("square/go-jose: unsupported key type/format")

	// ErrNotSupported serialization of object is not supported. This occurs when
	// trying to compact-serialize an object which can't be represented in
	// compact form.
	ErrNotSupported = errors.New("square/go-jose: compact serialization not supported for object")

	// ErrUnprotectedNonce indicates that while parsing a JWS or JWE object, a
	// nonce header parameter was included in an unprotected header object.
	ErrUnprotectedNonce = errors.New("square/go-jose: Nonce parameter included in unprotected header")
)

Types

type CompressionAlgorithm

type CompressionAlgorithm string

CompressionAlgorithm represents an algorithm used for plaintext compression.

type ContentEncryption

type ContentEncryption string

ContentEncryption represents a content encryption algorithm.

type ContentType

type ContentType string

ContentType represents type of the contained data.

type Encrypter

type Encrypter interface {
	Encrypt(plaintext []byte) (*JSONWebEncryption, error)
	EncryptWithAuthData(plaintext []byte, aad []byte) (*JSONWebEncryption, error)
	Options() EncrypterOptions
}

Encrypter represents an encrypter which produces an encrypted JWE object.

Example (Encrypt)

Code:

{
	// Encrypt a plaintext in order to get an encrypted JWE object.
	var plaintext = []byte("This is a secret message")

	encrypter.Encrypt(plaintext)
}
Example (EncryptWithAuthData)

Code:

{
	// Encrypt a plaintext in order to get an encrypted JWE object. Also attach
	// some additional authenticated data (AAD) to the object. Note that objects
	// with attached AAD can only be represented using full serialization.
	var plaintext = []byte("This is a secret message")
	var aad = []byte("This is authenticated, but public data")

	encrypter.EncryptWithAuthData(plaintext, aad)
}

func NewEncrypter

func NewEncrypter(enc ContentEncryption, rcpt Recipient, opts *EncrypterOptions) (Encrypter, error)

NewEncrypter creates an appropriate encrypter based on the key type

Example (PublicKey)

Code:

{
	var publicKey *rsa.PublicKey

	// Instantiate an encrypter using RSA-OAEP with AES128-GCM.
	NewEncrypter(A128GCM, Recipient{Algorithm: RSA_OAEP, Key: publicKey}, nil)

	// Instantiate an encrypter using RSA-PKCS1v1.5 with AES128-CBC+HMAC.
	NewEncrypter(A128CBC_HS256, Recipient{Algorithm: RSA1_5, Key: publicKey}, nil)
}
Example (Symmetric)

Code:

{
	var sharedKey []byte

	// Instantiate an encrypter using AES128-GCM with AES-GCM key wrap.
	NewEncrypter(A128GCM, Recipient{Algorithm: A128GCMKW, Key: sharedKey}, nil)

	// Instantiate an encrypter using AES128-GCM directly, w/o key wrapping.
	NewEncrypter(A128GCM, Recipient{Algorithm: DIRECT, Key: sharedKey}, nil)
}

func NewMultiEncrypter

func NewMultiEncrypter(enc ContentEncryption, rcpts []Recipient, opts *EncrypterOptions) (Encrypter, error)

NewMultiEncrypter creates a multi-encrypter based on the given parameters

Example

Code:

{
	var publicKey *rsa.PublicKey
	var sharedKey []byte

	// Instantiate an encrypter using AES-GCM.
	NewMultiEncrypter(A128GCM, []Recipient{
		{Algorithm: A128GCMKW, Key: sharedKey},
		{Algorithm: RSA_OAEP, Key: publicKey},
	}, nil)
}

type EncrypterOptions

type EncrypterOptions struct {
	Compression CompressionAlgorithm
	ContentType ContentType
}

EncrypterOptions represents options that can be set on new encrypters.

type Header struct {
	KeyID       string
	JSONWebKey  *JSONWebKey
	Algorithm   string
	Nonce       string
	ContentType string
}

Header represents the read-only JOSE header for JWE/JWS objects.

type JSONWebEncryption

type JSONWebEncryption struct {
	Header Header
	// contains filtered or unexported fields
}

JSONWebEncryption represents an encrypted JWE object after parsing.

func ParseEncrypted

func ParseEncrypted(input string) (*JSONWebEncryption, error)

ParseEncrypted parses an encrypted message in compact or full serialization format.

func (JSONWebEncryption) CompactSerialize

func (obj JSONWebEncryption) CompactSerialize() (string, error)

CompactSerialize serializes an object using the compact serialization format.

func (JSONWebEncryption) Decrypt

func (obj JSONWebEncryption) Decrypt(decryptionKey interface{}) ([]byte, error)

Decrypt and validate the object and return the plaintext. Note that this function does not support multi-recipient, if you desire multi-recipient decryption use DecryptMulti instead.

func (JSONWebEncryption) DecryptMulti

func (obj JSONWebEncryption) DecryptMulti(decryptionKey interface{}) (int, Header, []byte, error)

DecryptMulti decrypts and validates the object and returns the plaintexts, with support for multiple recipients. It returns the index of the recipient for which the decryption was successful, the merged headers for that recipient, and the plaintext.

func (JSONWebEncryption) FullSerialize

func (obj JSONWebEncryption) FullSerialize() string

FullSerialize serializes an object using the full JSON serialization format.

func (JSONWebEncryption) GetAuthData

func (obj JSONWebEncryption) GetAuthData() []byte

GetAuthData retrieves the (optional) authenticated data attached to the object.

type JSONWebKey

type JSONWebKey struct {
	Key          interface{}
	Certificates []*x509.Certificate
	KeyID        string
	Algorithm    string
	Use          string
}

JSONWebKey represents a public or private key in JWK format.

func (*JSONWebKey) IsPublic

func (k *JSONWebKey) IsPublic() bool

IsPublic returns true if the JWK represents a public key (not symmetric, not private).

func (JSONWebKey) MarshalJSON

func (k JSONWebKey) MarshalJSON() ([]byte, error)

MarshalJSON serializes the given key to its JSON representation.

func (*JSONWebKey) Thumbprint

func (k *JSONWebKey) Thumbprint(hash crypto.Hash) ([]byte, error)

Thumbprint computes the JWK Thumbprint of a key using the indicated hash algorithm.

func (*JSONWebKey) UnmarshalJSON

func (k *JSONWebKey) UnmarshalJSON(data []byte) (err error)

UnmarshalJSON reads a key from its JSON representation.

func (*JSONWebKey) Valid

func (k *JSONWebKey) Valid() bool

Valid checks that the key contains the expected parameters.

type JSONWebKeySet

type JSONWebKeySet struct {
	Keys []JSONWebKey `json:"keys"`
}

JSONWebKeySet represents a JWK Set object.

func (*JSONWebKeySet) Key

func (s *JSONWebKeySet) Key(kid string) []JSONWebKey

Key convenience method returns keys by key ID. Specification states that a JWK Set "SHOULD" use distinct key IDs, but allows for some cases where they are not distinct. Hence method returns a slice of JSONWebKeys.

type JSONWebSignature

type JSONWebSignature struct {

	// Signatures attached to this object (may be more than one for multi-sig).
	// Be careful about accessing these directly, prefer to use Verify() or
	// VerifyMulti() to ensure that the data you're getting is verified.
	Signatures []Signature
	// contains filtered or unexported fields
}

JSONWebSignature represents a signed JWS object after parsing.

func ParseSigned

func ParseSigned(input string) (*JSONWebSignature, error)

ParseSigned parses a signed message in compact or full serialization format.

func (JSONWebSignature) CompactSerialize

func (obj JSONWebSignature) CompactSerialize() (string, error)

CompactSerialize serializes an object using the compact serialization format.

func (JSONWebSignature) FullSerialize

func (obj JSONWebSignature) FullSerialize() string

FullSerialize serializes an object using the full JSON serialization format.

func (JSONWebSignature) Verify

func (obj JSONWebSignature) Verify(verificationKey interface{}) ([]byte, error)

Verify validates the signature on the object and returns the payload. This function does not support multi-signature, if you desire multi-sig verification use VerifyMulti instead.

Be careful when verifying signatures based on embedded JWKs inside the payload header. You cannot assume that the key received in a payload is trusted.

func (JSONWebSignature) VerifyMulti

func (obj JSONWebSignature) VerifyMulti(verificationKey interface{}) (int, Signature, []byte, error)

VerifyMulti validates (one of the multiple) signatures on the object and returns the index of the signature that was verified, along with the signature object and the payload. We return the signature and index to guarantee that callers are getting the verified value.

type KeyAlgorithm

type KeyAlgorithm string

KeyAlgorithm represents a key management algorithm.

type NonceSource

type NonceSource interface {
	Nonce() (string, error)
}

NonceSource represents a source of random nonces to go into JWS objects

type Recipient

type Recipient struct {
	Algorithm KeyAlgorithm
	Key       interface{}
	KeyID     string
}

Recipient represents an algorithm/key to encrypt messages to.

type Signature

type Signature struct {
	// Header fields, such as the signature algorithm
	Header Header

	// The actual signature value
	Signature []byte
	// contains filtered or unexported fields
}

Signature represents a single signature over the JWS payload and protected header.

type SignatureAlgorithm

type SignatureAlgorithm string

SignatureAlgorithm represents a signature (or MAC) algorithm.

type Signer

type Signer interface {
	Sign(payload []byte) (*JSONWebSignature, error)
}

Signer represents a signer which takes a payload and produces a signed JWS object.

func NewMultiSigner

func NewMultiSigner(sigs []SigningKey, opts *SignerOptions) (Signer, error)

NewMultiSigner creates a signer for multiple recipients

Example

Code:

{
	var privateKey *rsa.PrivateKey
	var sharedKey []byte

	// Instantiate a signer for multiple recipients.
	NewMultiSigner([]SigningKey{
		{Algorithm: HS256, Key: sharedKey},
		{Algorithm: PS384, Key: privateKey},
	}, nil)
}

func NewSigner

func NewSigner(sig SigningKey, opts *SignerOptions) (Signer, error)

NewSigner creates an appropriate signer based on the key type

Example (PublicKey)

Code:

{
	var rsaPrivateKey *rsa.PrivateKey
	var ecdsaPrivateKey *ecdsa.PrivateKey

	// Instantiate a signer using RSA-PKCS#1v1.5 with SHA-256.
	NewSigner(SigningKey{Algorithm: RS256, Key: rsaPrivateKey}, nil)

	// Instantiate a signer using ECDSA with SHA-384.
	NewSigner(SigningKey{Algorithm: ES384, Key: ecdsaPrivateKey}, nil)
}
Example (Symmetric)

Code:

{
	var sharedKey []byte

	// Instantiate an signer using HMAC-SHA256.
	NewSigner(SigningKey{Algorithm: HS256, Key: sharedKey}, nil)

	// Instantiate an signer using HMAC-SHA512.
	NewSigner(SigningKey{Algorithm: HS512, Key: sharedKey}, nil)
}

type SignerOptions

type SignerOptions struct {
	NonceSource NonceSource
	EmbedJWK    bool
}

SignerOptions represents options that can be set when creating signers.

type SigningKey

type SigningKey struct {
	Algorithm SignatureAlgorithm
	Key       interface{}
}

SigningKey represents an algorithm/key used to sign a message.

Source Files

asymmetric.go crypter.go doc.go encoding.go jwe.go jwk.go jws.go shared.go signing.go symmetric.go

Directories

PathSynopsis
cipher
jose-util
jsonPackage json implements encoding and decoding of JSON objects as defined in RFC 4627.
jwt
Version
v2.0.1+incompatible
Published
Nov 17, 2016
Platform
windows/amd64
Imports
28 packages
Last checked
2 months ago

Tools for package owners.