package quaternion

import "google.golang.org/genproto/googleapis/type/quaternion"

Index

Variables

var File_google_type_quaternion_proto protoreflect.FileDescriptor

Types

type Quaternion

type Quaternion struct {

	// The x component.
	X float64 `protobuf:"fixed64,1,opt,name=x,proto3" json:"x,omitempty"`
	// The y component.
	Y float64 `protobuf:"fixed64,2,opt,name=y,proto3" json:"y,omitempty"`
	// The z component.
	Z float64 `protobuf:"fixed64,3,opt,name=z,proto3" json:"z,omitempty"`
	// The scalar component.
	W float64 `protobuf:"fixed64,4,opt,name=w,proto3" json:"w,omitempty"`
	// contains filtered or unexported fields
}

A quaternion is defined as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two Euclidean vectors (https://en.wikipedia.org/wiki/Quaternion).

Quaternions are often used in calculations involving three-dimensional rotations (https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation), as they provide greater mathematical robustness by avoiding the gimbal lock problems that can be encountered when using Euler angles (https://en.wikipedia.org/wiki/Gimbal_lock).

Quaternions are generally represented in this form:

w + xi + yj + zk

where x, y, z, and w are real numbers, and i, j, and k are three imaginary numbers.

Our naming choice `(x, y, z, w)` comes from the desire to avoid confusion for those interested in the geometric properties of the quaternion in the 3D Cartesian space. Other texts often use alternative names or subscripts, such as `(a, b, c, d)`, `(1, i, j, k)`, or `(0, 1, 2, 3)`, which are perhaps better suited for mathematical interpretations.

To avoid any confusion, as well as to maintain compatibility with a large number of software libraries, the quaternions represented using the protocol buffer below *must* follow the Hamilton convention, which defines `ij = k` (i.e. a right-handed algebra), and therefore:

i^2 = j^2 = k^2 = ijk = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

Please DO NOT use this to represent quaternions that follow the JPL convention, or any of the other quaternion flavors out there.

Definitions:

A quaternion can be normalized by dividing it by its norm. The resulting quaternion maintains the same direction, but has a norm of 1, i.e. it moves on the unit sphere. This is generally necessary for rotation and orientation quaternions, to avoid rounding errors: https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Note that `(x, y, z, w)` and `(-x, -y, -z, -w)` represent the same rotation, but normalization would be even more useful, e.g. for comparison purposes, if it would produce a unique representation. It is thus recommended that `w` be kept positive, which can be achieved by changing all the signs when `w` is negative.

func (*Quaternion) Descriptor

func (*Quaternion) Descriptor() ([]byte, []int)

Deprecated: Use Quaternion.ProtoReflect.Descriptor instead.

func (*Quaternion) GetW

func (x *Quaternion) GetW() float64

func (*Quaternion) GetX

func (x *Quaternion) GetX() float64

func (*Quaternion) GetY

func (x *Quaternion) GetY() float64

func (*Quaternion) GetZ

func (x *Quaternion) GetZ() float64

func (*Quaternion) ProtoMessage

func (*Quaternion) ProtoMessage()

func (*Quaternion) ProtoReflect

func (x *Quaternion) ProtoReflect() protoreflect.Message

func (*Quaternion) Reset

func (x *Quaternion) Reset()

func (*Quaternion) String

func (x *Quaternion) String() string

Source Files

quaternion.pb.go

Version
v0.0.0-20250219182151-9fdb1cabc7b2 (latest)
Published
Feb 19, 2025
Platform
linux/amd64
Imports
4 packages
Last checked
53 minutes ago

Tools for package owners.