package automl
import "google.golang.org/genproto/googleapis/cloud/automl/v1beta1"
Package automl aliases all exported identifiers in package "cloud.google.com/go/automl/apiv1beta1/automlpb".
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb. Please read https://github.com/googleapis/google-cloud-go/blob/main/migration.md for more details.
Index ¶
- Constants
- Variables
- func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
- func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
- type AnnotationPayload
- type AnnotationPayload_Classification
- type AnnotationPayload_ImageObjectDetection
- type AnnotationPayload_Tables
- type AnnotationPayload_TextExtraction
- type AnnotationPayload_TextSentiment
- type AnnotationPayload_Translation
- type AnnotationPayload_VideoClassification
- type AnnotationPayload_VideoObjectTracking
- type AnnotationSpec
- type ArrayStats
- type AutoMlClient
- type AutoMlServer
- type BatchPredictInputConfig
- type BatchPredictInputConfig_BigquerySource
- type BatchPredictInputConfig_GcsSource
- type BatchPredictOperationMetadata
- type BatchPredictOperationMetadata_BatchPredictOutputInfo
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
- type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
- type BatchPredictOutputConfig
- type BatchPredictOutputConfig_BigqueryDestination
- type BatchPredictOutputConfig_GcsDestination
- type BatchPredictRequest
- type BatchPredictResult
- type BigQueryDestination
- type BigQuerySource
- type BoundingBoxMetricsEntry
- type BoundingBoxMetricsEntry_ConfidenceMetricsEntry
- type BoundingPoly
- type CategoryStats
- type CategoryStats_SingleCategoryStats
- type ClassificationAnnotation
- type ClassificationEvaluationMetrics
- type ClassificationEvaluationMetrics_ConfidenceMetricsEntry
- type ClassificationEvaluationMetrics_ConfusionMatrix
- type ClassificationEvaluationMetrics_ConfusionMatrix_Row
- type ClassificationType
- type ColumnSpec
- type ColumnSpec_CorrelatedColumn
- type CorrelationStats
- type CreateDatasetRequest
- type CreateModelOperationMetadata
- type CreateModelRequest
- type DataStats
- type DataStats_ArrayStats
- type DataStats_CategoryStats
- type DataStats_Float64Stats
- type DataStats_StringStats
- type DataStats_StructStats
- type DataStats_TimestampStats
- type DataType
- type DataType_ListElementType
- type DataType_StructType
- type DataType_TimeFormat
- type Dataset
- type Dataset_ImageClassificationDatasetMetadata
- type Dataset_ImageObjectDetectionDatasetMetadata
- type Dataset_TablesDatasetMetadata
- type Dataset_TextClassificationDatasetMetadata
- type Dataset_TextExtractionDatasetMetadata
- type Dataset_TextSentimentDatasetMetadata
- type Dataset_TranslationDatasetMetadata
- type Dataset_VideoClassificationDatasetMetadata
- type Dataset_VideoObjectTrackingDatasetMetadata
- type DeleteDatasetRequest
- type DeleteModelRequest
- type DeleteOperationMetadata
- type DeployModelOperationMetadata
- type DeployModelRequest
- type DeployModelRequest_ImageClassificationModelDeploymentMetadata
- type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
- type Document
- type DocumentDimensions
- type DocumentDimensions_DocumentDimensionUnit
- type DocumentInputConfig
- type Document_Layout
- type Document_Layout_TextSegmentType
- type DoubleRange
- type ExamplePayload
- type ExamplePayload_Document
- type ExamplePayload_Image
- type ExamplePayload_Row
- type ExamplePayload_TextSnippet
- type ExportDataOperationMetadata
- type ExportDataOperationMetadata_ExportDataOutputInfo
- type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset
- type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
- type ExportDataRequest
- type ExportEvaluatedExamplesOperationMetadata
- type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
- type ExportEvaluatedExamplesOutputConfig
- type ExportEvaluatedExamplesOutputConfig_BigqueryDestination
- type ExportEvaluatedExamplesRequest
- type ExportModelOperationMetadata
- type ExportModelOperationMetadata_ExportModelOutputInfo
- type ExportModelRequest
- type Float64Stats
- type Float64Stats_HistogramBucket
- type GcrDestination
- type GcsDestination
- type GcsSource
- type GetAnnotationSpecRequest
- type GetColumnSpecRequest
- type GetDatasetRequest
- type GetModelEvaluationRequest
- type GetModelRequest
- type GetTableSpecRequest
- type Image
- type ImageClassificationDatasetMetadata
- type ImageClassificationModelDeploymentMetadata
- type ImageClassificationModelMetadata
- type ImageObjectDetectionAnnotation
- type ImageObjectDetectionDatasetMetadata
- type ImageObjectDetectionEvaluationMetrics
- type ImageObjectDetectionModelDeploymentMetadata
- type ImageObjectDetectionModelMetadata
- type Image_ImageBytes
- type Image_InputConfig
- type ImportDataOperationMetadata
- type ImportDataRequest
- type InputConfig
- type InputConfig_BigquerySource
- type InputConfig_GcsSource
- type ListColumnSpecsRequest
- type ListColumnSpecsResponse
- type ListDatasetsRequest
- type ListDatasetsResponse
- type ListModelEvaluationsRequest
- type ListModelEvaluationsResponse
- type ListModelsRequest
- type ListModelsResponse
- type ListTableSpecsRequest
- type ListTableSpecsResponse
- type Model
- type ModelEvaluation
- type ModelEvaluation_ClassificationEvaluationMetrics
- type ModelEvaluation_ImageObjectDetectionEvaluationMetrics
- type ModelEvaluation_RegressionEvaluationMetrics
- type ModelEvaluation_TextExtractionEvaluationMetrics
- type ModelEvaluation_TextSentimentEvaluationMetrics
- type ModelEvaluation_TranslationEvaluationMetrics
- type ModelEvaluation_VideoObjectTrackingEvaluationMetrics
- type ModelExportOutputConfig
- type ModelExportOutputConfig_GcrDestination
- type ModelExportOutputConfig_GcsDestination
- type Model_DeploymentState
- type Model_ImageClassificationModelMetadata
- type Model_ImageObjectDetectionModelMetadata
- type Model_TablesModelMetadata
- type Model_TextClassificationModelMetadata
- type Model_TextExtractionModelMetadata
- type Model_TextSentimentModelMetadata
- type Model_TranslationModelMetadata
- type Model_VideoClassificationModelMetadata
- type Model_VideoObjectTrackingModelMetadata
- type NormalizedVertex
- type OperationMetadata
- type OperationMetadata_BatchPredictDetails
- type OperationMetadata_CreateModelDetails
- type OperationMetadata_DeleteDetails
- type OperationMetadata_DeployModelDetails
- type OperationMetadata_ExportDataDetails
- type OperationMetadata_ExportEvaluatedExamplesDetails
- type OperationMetadata_ExportModelDetails
- type OperationMetadata_ImportDataDetails
- type OperationMetadata_UndeployModelDetails
- type OutputConfig
- type OutputConfig_BigqueryDestination
- type OutputConfig_GcsDestination
- type PredictRequest
- type PredictResponse
- type PredictionServiceClient
- type PredictionServiceServer
- type RegressionEvaluationMetrics
- type Row
- type StringStats
- type StringStats_UnigramStats
- type StructStats
- type StructType
- type TableSpec
- type TablesAnnotation
- type TablesDatasetMetadata
- type TablesModelColumnInfo
- type TablesModelMetadata
- type TablesModelMetadata_OptimizationObjectivePrecisionValue
- type TablesModelMetadata_OptimizationObjectiveRecallValue
- type TextClassificationDatasetMetadata
- type TextClassificationModelMetadata
- type TextExtractionAnnotation
- type TextExtractionAnnotation_TextSegment
- type TextExtractionDatasetMetadata
- type TextExtractionEvaluationMetrics
- type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
- type TextExtractionModelMetadata
- type TextSegment
- type TextSentimentAnnotation
- type TextSentimentDatasetMetadata
- type TextSentimentEvaluationMetrics
- type TextSentimentModelMetadata
- type TextSnippet
- type TimeSegment
- type TimestampStats
- type TimestampStats_GranularStats
- type TranslationAnnotation
- type TranslationDatasetMetadata
- type TranslationEvaluationMetrics
- type TranslationModelMetadata
- type TypeCode
- type UndeployModelOperationMetadata
- type UndeployModelRequest
- type UnimplementedAutoMlServer
- type UnimplementedPredictionServiceServer
- type UpdateColumnSpecRequest
- type UpdateDatasetRequest
- type UpdateTableSpecRequest
- type VideoClassificationAnnotation
- type VideoClassificationDatasetMetadata
- type VideoClassificationModelMetadata
- type VideoObjectTrackingAnnotation
- type VideoObjectTrackingDatasetMetadata
- type VideoObjectTrackingEvaluationMetrics
- type VideoObjectTrackingModelMetadata
Constants ¶
const ( ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED = src.ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType_MULTICLASS = src.ClassificationType_MULTICLASS ClassificationType_MULTILABEL = src.ClassificationType_MULTILABEL DocumentDimensions_CENTIMETER = src.DocumentDimensions_CENTIMETER DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED = src.DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_INCH = src.DocumentDimensions_INCH DocumentDimensions_POINT = src.DocumentDimensions_POINT Document_Layout_FORM_FIELD = src.Document_Layout_FORM_FIELD Document_Layout_FORM_FIELD_CONTENTS = src.Document_Layout_FORM_FIELD_CONTENTS Document_Layout_FORM_FIELD_NAME = src.Document_Layout_FORM_FIELD_NAME Document_Layout_PARAGRAPH = src.Document_Layout_PARAGRAPH Document_Layout_TABLE = src.Document_Layout_TABLE Document_Layout_TABLE_CELL = src.Document_Layout_TABLE_CELL Document_Layout_TABLE_HEADER = src.Document_Layout_TABLE_HEADER Document_Layout_TABLE_ROW = src.Document_Layout_TABLE_ROW Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED = src.Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TOKEN = src.Document_Layout_TOKEN Model_DEPLOYED = src.Model_DEPLOYED Model_DEPLOYMENT_STATE_UNSPECIFIED = src.Model_DEPLOYMENT_STATE_UNSPECIFIED Model_UNDEPLOYED = src.Model_UNDEPLOYED TypeCode_ARRAY = src.TypeCode_ARRAY TypeCode_CATEGORY = src.TypeCode_CATEGORY TypeCode_FLOAT64 = src.TypeCode_FLOAT64 TypeCode_STRING = src.TypeCode_STRING TypeCode_STRUCT = src.TypeCode_STRUCT TypeCode_TIMESTAMP = src.TypeCode_TIMESTAMP TypeCode_TYPE_CODE_UNSPECIFIED = src.TypeCode_TYPE_CODE_UNSPECIFIED )
Deprecated: Please use consts in: cloud.google.com/go/automl/apiv1beta1/automlpb
Variables ¶
var ( ClassificationType_name = src.ClassificationType_name ClassificationType_value = src.ClassificationType_value DocumentDimensions_DocumentDimensionUnit_name = src.DocumentDimensions_DocumentDimensionUnit_name DocumentDimensions_DocumentDimensionUnit_value = src.DocumentDimensions_DocumentDimensionUnit_value Document_Layout_TextSegmentType_name = src.Document_Layout_TextSegmentType_name Document_Layout_TextSegmentType_value = src.Document_Layout_TextSegmentType_value File_google_cloud_automl_v1beta1_annotation_payload_proto = src.File_google_cloud_automl_v1beta1_annotation_payload_proto File_google_cloud_automl_v1beta1_annotation_spec_proto = src.File_google_cloud_automl_v1beta1_annotation_spec_proto File_google_cloud_automl_v1beta1_classification_proto = src.File_google_cloud_automl_v1beta1_classification_proto File_google_cloud_automl_v1beta1_column_spec_proto = src.File_google_cloud_automl_v1beta1_column_spec_proto File_google_cloud_automl_v1beta1_data_items_proto = src.File_google_cloud_automl_v1beta1_data_items_proto File_google_cloud_automl_v1beta1_data_stats_proto = src.File_google_cloud_automl_v1beta1_data_stats_proto File_google_cloud_automl_v1beta1_data_types_proto = src.File_google_cloud_automl_v1beta1_data_types_proto File_google_cloud_automl_v1beta1_dataset_proto = src.File_google_cloud_automl_v1beta1_dataset_proto File_google_cloud_automl_v1beta1_detection_proto = src.File_google_cloud_automl_v1beta1_detection_proto File_google_cloud_automl_v1beta1_geometry_proto = src.File_google_cloud_automl_v1beta1_geometry_proto File_google_cloud_automl_v1beta1_image_proto = src.File_google_cloud_automl_v1beta1_image_proto File_google_cloud_automl_v1beta1_io_proto = src.File_google_cloud_automl_v1beta1_io_proto File_google_cloud_automl_v1beta1_model_evaluation_proto = src.File_google_cloud_automl_v1beta1_model_evaluation_proto File_google_cloud_automl_v1beta1_model_proto = src.File_google_cloud_automl_v1beta1_model_proto File_google_cloud_automl_v1beta1_operations_proto = src.File_google_cloud_automl_v1beta1_operations_proto File_google_cloud_automl_v1beta1_prediction_service_proto = src.File_google_cloud_automl_v1beta1_prediction_service_proto File_google_cloud_automl_v1beta1_ranges_proto = src.File_google_cloud_automl_v1beta1_ranges_proto File_google_cloud_automl_v1beta1_regression_proto = src.File_google_cloud_automl_v1beta1_regression_proto File_google_cloud_automl_v1beta1_service_proto = src.File_google_cloud_automl_v1beta1_service_proto File_google_cloud_automl_v1beta1_table_spec_proto = src.File_google_cloud_automl_v1beta1_table_spec_proto File_google_cloud_automl_v1beta1_tables_proto = src.File_google_cloud_automl_v1beta1_tables_proto File_google_cloud_automl_v1beta1_temporal_proto = src.File_google_cloud_automl_v1beta1_temporal_proto File_google_cloud_automl_v1beta1_text_extraction_proto = src.File_google_cloud_automl_v1beta1_text_extraction_proto File_google_cloud_automl_v1beta1_text_proto = src.File_google_cloud_automl_v1beta1_text_proto File_google_cloud_automl_v1beta1_text_segment_proto = src.File_google_cloud_automl_v1beta1_text_segment_proto File_google_cloud_automl_v1beta1_text_sentiment_proto = src.File_google_cloud_automl_v1beta1_text_sentiment_proto File_google_cloud_automl_v1beta1_translation_proto = src.File_google_cloud_automl_v1beta1_translation_proto File_google_cloud_automl_v1beta1_video_proto = src.File_google_cloud_automl_v1beta1_video_proto Model_DeploymentState_name = src.Model_DeploymentState_name Model_DeploymentState_value = src.Model_DeploymentState_value TypeCode_name = src.TypeCode_name TypeCode_value = src.TypeCode_value )
Deprecated: Please use vars in: cloud.google.com/go/automl/apiv1beta1/automlpb
Functions ¶
func RegisterAutoMlServer ¶
func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1beta1/automlpb
func RegisterPredictionServiceServer ¶
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1beta1/automlpb
Types ¶
type AnnotationPayload ¶
type AnnotationPayload = src.AnnotationPayload
Contains annotation information that is relevant to AutoML.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type AnnotationPayload_Classification ¶
type AnnotationPayload_Classification = src.AnnotationPayload_Classification
type AnnotationPayload_ImageObjectDetection ¶
type AnnotationPayload_ImageObjectDetection = src.AnnotationPayload_ImageObjectDetection
type AnnotationPayload_Tables ¶
type AnnotationPayload_Tables = src.AnnotationPayload_Tables
type AnnotationPayload_TextExtraction ¶
type AnnotationPayload_TextExtraction = src.AnnotationPayload_TextExtraction
type AnnotationPayload_TextSentiment ¶
type AnnotationPayload_TextSentiment = src.AnnotationPayload_TextSentiment
type AnnotationPayload_Translation ¶
type AnnotationPayload_Translation = src.AnnotationPayload_Translation
type AnnotationPayload_VideoClassification ¶
type AnnotationPayload_VideoClassification = src.AnnotationPayload_VideoClassification
type AnnotationPayload_VideoObjectTracking ¶
type AnnotationPayload_VideoObjectTracking = src.AnnotationPayload_VideoObjectTracking
type AnnotationSpec ¶
type AnnotationSpec = src.AnnotationSpec
A definition of an annotation spec.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ArrayStats ¶
type ArrayStats = src.ArrayStats
The data statistics of a series of ARRAY values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type AutoMlClient ¶
type AutoMlClient = src.AutoMlClient
AutoMlClient is the client API for AutoMl service. For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
func NewAutoMlClient ¶
func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient
Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1beta1/automlpb
type AutoMlServer ¶
type AutoMlServer = src.AutoMlServer
AutoMlServer is the server API for AutoMl service.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictInputConfig ¶
type BatchPredictInputConfig = src.BatchPredictInputConfig
Input configuration for BatchPredict Action. The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise. The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are: - For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png - For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png - For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf - For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf - For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf - For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf - For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } } - For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]. GCS case: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. For FORECASTING [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: all columns having [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType] type will be ignored. First three sample rows of a CSV file: "First Name","Last Name","Dob","Addresses" "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} BigQuery case: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. For FORECASTING [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: all columns having [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType] type will be ignored. Definitions: GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes ("") TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed and it means the end of the example. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictInputConfig_BigquerySource ¶
type BatchPredictInputConfig_BigquerySource = src.BatchPredictInputConfig_BigquerySource
type BatchPredictInputConfig_GcsSource ¶
type BatchPredictInputConfig_GcsSource = src.BatchPredictInputConfig_GcsSource
type BatchPredictOperationMetadata ¶
type BatchPredictOperationMetadata = src.BatchPredictOperationMetadata
Details of BatchPredict operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictOperationMetadata_BatchPredictOutputInfo ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo = src.BatchPredictOperationMetadata_BatchPredictOutputInfo
Further describes this batch predict's output. Supplements BatchPredictOutputConfig[google.cloud.automl.v1beta1.BatchPredictOutputConfig].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset = src.BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory ¶
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory = src.BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
type BatchPredictOutputConfig ¶
type BatchPredictOutputConfig = src.BatchPredictOutputConfig
Output configuration for BatchPredict Action. # As destination the [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-<model-display-name>-<timestamp-of-prediction-call>", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for. - For Image Classification: In the created directory files `image_classification_1.jsonl`, `image_classification_2.jsonl`,...,`image_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only `code` and `message`fields. * For Image Object Detection: In the created directory files `image_object_detection_1.jsonl`, `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only `code` and `message`fields. * For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created. The format of video_classification.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by `classifaction_types` parameter in [PredictService.BatchPredictRequest.params][]). * For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)). The format of video_object_tracking.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set. * For Text Classification: In the created directory files `text_classification_1.jsonl`, `text_classification_2.jsonl`,...,`text_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only `code` and `message`. * For Text Sentiment: In the created directory files `text_sentiment_1.jsonl`, `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only `code` and `message`. * For Text Extraction: In the created directory files `text_extraction_1.jsonl`, `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl` will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly one [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only `code` and `message`. * For Tables: Output depends on whether [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] or [bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination] is set (either is allowed). GCS case: In the created directory files `tables_1.csv`, `tables_2.csv`,..., `tables_N.csv` will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: Each .csv file will contain a header, listing all columns' [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] given on input followed by M target column names in the format of "<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target value>_score" where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction [scores][google.cloud.automl.v1beta1.TablesAnnotation.score]. For REGRESSION and FORECASTING [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]: Each .csv file will contain a header, listing all columns' [display_name-s][google.cloud.automl.v1beta1.display_name] given on input followed by the predicted target column with name in the format of "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>" Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be created (N depends on total number of failed rows). These files will have analogous format as `tables_*.csv`, but always with a single target column having [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a JSON string, and containing only `code` and `message`. BigQuery case: [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with name `prediction_<model-display-name>_<timestamp-of-prediction-call>` where <model-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two tables will be created, `predictions`, and `errors`. The `predictions` table's column names will be the input columns' [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name] followed by the target column with name in the format of "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>" The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], represented as STRUCT-s, containing TablesAnnotation[google.cloud.automl.v1beta1.TablesAnnotation]. The `errors` table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of "errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>", and as a value has [`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a STRUCT, and containing only `code` and `message`.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictOutputConfig_BigqueryDestination ¶
type BatchPredictOutputConfig_BigqueryDestination = src.BatchPredictOutputConfig_BigqueryDestination
type BatchPredictOutputConfig_GcsDestination ¶
type BatchPredictOutputConfig_GcsDestination = src.BatchPredictOutputConfig_GcsDestination
type BatchPredictRequest ¶
type BatchPredictRequest = src.BatchPredictRequest
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BatchPredictResult ¶
type BatchPredictResult = src.BatchPredictResult
Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BigQueryDestination ¶
type BigQueryDestination = src.BigQueryDestination
The BigQuery location for the output content.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BigQuerySource ¶
type BigQuerySource = src.BigQuerySource
The BigQuery location for the input content.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BoundingBoxMetricsEntry ¶
type BoundingBoxMetricsEntry = src.BoundingBoxMetricsEntry
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry ¶
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry = src.BoundingBoxMetricsEntry_ConfidenceMetricsEntry
Metrics for a single confidence threshold.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type BoundingPoly ¶
type BoundingPoly = src.BoundingPoly
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CategoryStats ¶
type CategoryStats = src.CategoryStats
The data statistics of a series of CATEGORY values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CategoryStats_SingleCategoryStats ¶
type CategoryStats_SingleCategoryStats = src.CategoryStats_SingleCategoryStats
The statistics of a single CATEGORY value.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationAnnotation ¶
type ClassificationAnnotation = src.ClassificationAnnotation
Contains annotation details specific to classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationEvaluationMetrics ¶
type ClassificationEvaluationMetrics = src.ClassificationEvaluationMetrics
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry ¶
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry = src.ClassificationEvaluationMetrics_ConfidenceMetricsEntry
Metrics for a single confidence threshold.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationEvaluationMetrics_ConfusionMatrix ¶
type ClassificationEvaluationMetrics_ConfusionMatrix = src.ClassificationEvaluationMetrics_ConfusionMatrix
Confusion matrix of the model running the classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationEvaluationMetrics_ConfusionMatrix_Row ¶
type ClassificationEvaluationMetrics_ConfusionMatrix_Row = src.ClassificationEvaluationMetrics_ConfusionMatrix_Row
Output only. A row in the confusion matrix.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ClassificationType ¶
type ClassificationType = src.ClassificationType
Type of the classification problem.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ColumnSpec ¶
type ColumnSpec = src.ColumnSpec
A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by: - Tables
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ColumnSpec_CorrelatedColumn ¶
type ColumnSpec_CorrelatedColumn = src.ColumnSpec_CorrelatedColumn
Identifies the table's column, and its correlation with the column this ColumnSpec describes.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CorrelationStats ¶
type CorrelationStats = src.CorrelationStats
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CreateDatasetRequest ¶
type CreateDatasetRequest = src.CreateDatasetRequest
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CreateModelOperationMetadata ¶
type CreateModelOperationMetadata = src.CreateModelOperationMetadata
Details of CreateModel operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type CreateModelRequest ¶
type CreateModelRequest = src.CreateModelRequest
Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DataStats ¶
The data statistics of a series of values that share the same DataType.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DataStats_ArrayStats ¶
type DataStats_ArrayStats = src.DataStats_ArrayStats
type DataStats_CategoryStats ¶
type DataStats_CategoryStats = src.DataStats_CategoryStats
type DataStats_Float64Stats ¶
type DataStats_Float64Stats = src.DataStats_Float64Stats
type DataStats_StringStats ¶
type DataStats_StringStats = src.DataStats_StringStats
type DataStats_StructStats ¶
type DataStats_StructStats = src.DataStats_StructStats
type DataStats_TimestampStats ¶
type DataStats_TimestampStats = src.DataStats_TimestampStats
type DataType ¶
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DataType_ListElementType ¶
type DataType_ListElementType = src.DataType_ListElementType
type DataType_StructType ¶
type DataType_StructType = src.DataType_StructType
type DataType_TimeFormat ¶
type DataType_TimeFormat = src.DataType_TimeFormat
type Dataset ¶
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Dataset_ImageClassificationDatasetMetadata ¶
type Dataset_ImageClassificationDatasetMetadata = src.Dataset_ImageClassificationDatasetMetadata
type Dataset_ImageObjectDetectionDatasetMetadata ¶
type Dataset_ImageObjectDetectionDatasetMetadata = src.Dataset_ImageObjectDetectionDatasetMetadata
type Dataset_TablesDatasetMetadata ¶
type Dataset_TablesDatasetMetadata = src.Dataset_TablesDatasetMetadata
type Dataset_TextClassificationDatasetMetadata ¶
type Dataset_TextClassificationDatasetMetadata = src.Dataset_TextClassificationDatasetMetadata
type Dataset_TextExtractionDatasetMetadata ¶
type Dataset_TextExtractionDatasetMetadata = src.Dataset_TextExtractionDatasetMetadata
type Dataset_TextSentimentDatasetMetadata ¶
type Dataset_TextSentimentDatasetMetadata = src.Dataset_TextSentimentDatasetMetadata
type Dataset_TranslationDatasetMetadata ¶
type Dataset_TranslationDatasetMetadata = src.Dataset_TranslationDatasetMetadata
type Dataset_VideoClassificationDatasetMetadata ¶
type Dataset_VideoClassificationDatasetMetadata = src.Dataset_VideoClassificationDatasetMetadata
type Dataset_VideoObjectTrackingDatasetMetadata ¶
type Dataset_VideoObjectTrackingDatasetMetadata = src.Dataset_VideoObjectTrackingDatasetMetadata
type DeleteDatasetRequest ¶
type DeleteDatasetRequest = src.DeleteDatasetRequest
Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DeleteModelRequest ¶
type DeleteModelRequest = src.DeleteModelRequest
Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DeleteOperationMetadata ¶
type DeleteOperationMetadata = src.DeleteOperationMetadata
Details of operations that perform deletes of any entities.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DeployModelOperationMetadata ¶
type DeployModelOperationMetadata = src.DeployModelOperationMetadata
Details of DeployModel operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DeployModelRequest ¶
type DeployModelRequest = src.DeployModelRequest
Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DeployModelRequest_ImageClassificationModelDeploymentMetadata ¶
type DeployModelRequest_ImageClassificationModelDeploymentMetadata = src.DeployModelRequest_ImageClassificationModelDeploymentMetadata
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata ¶
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata = src.DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
type Document ¶
A structured text document e.g. a PDF.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DocumentDimensions ¶
type DocumentDimensions = src.DocumentDimensions
Message that describes dimension of a document.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DocumentDimensions_DocumentDimensionUnit ¶
type DocumentDimensions_DocumentDimensionUnit = src.DocumentDimensions_DocumentDimensionUnit
Unit of the document dimension.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DocumentInputConfig ¶
type DocumentInputConfig = src.DocumentInputConfig
Input configuration of a Document[google.cloud.automl.v1beta1.Document].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Document_Layout ¶
type Document_Layout = src.Document_Layout
Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Document_Layout_TextSegmentType ¶
type Document_Layout_TextSegmentType = src.Document_Layout_TextSegmentType
The type of TextSegment in the context of the original document.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type DoubleRange ¶
type DoubleRange = src.DoubleRange
A range between two double numbers.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExamplePayload ¶
type ExamplePayload = src.ExamplePayload
Example data used for training or prediction.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExamplePayload_Document ¶
type ExamplePayload_Document = src.ExamplePayload_Document
type ExamplePayload_Image ¶
type ExamplePayload_Image = src.ExamplePayload_Image
type ExamplePayload_Row ¶
type ExamplePayload_Row = src.ExamplePayload_Row
type ExamplePayload_TextSnippet ¶
type ExamplePayload_TextSnippet = src.ExamplePayload_TextSnippet
type ExportDataOperationMetadata ¶
type ExportDataOperationMetadata = src.ExportDataOperationMetadata
Details of ExportData operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportDataOperationMetadata_ExportDataOutputInfo ¶
type ExportDataOperationMetadata_ExportDataOutputInfo = src.ExportDataOperationMetadata_ExportDataOutputInfo
Further describes this export data's output. Supplements OutputConfig[google.cloud.automl.v1beta1.OutputConfig].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset ¶
type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset = src.ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset
type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory ¶
type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory = src.ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
type ExportDataRequest ¶
type ExportDataRequest = src.ExportDataRequest
Request message for [AutoMl.ExportData][google.cloud.automl.v1beta1.AutoMl.ExportData].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportEvaluatedExamplesOperationMetadata ¶
type ExportEvaluatedExamplesOperationMetadata = src.ExportEvaluatedExamplesOperationMetadata
Details of EvaluatedExamples operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo ¶
type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo = src.ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo
Further describes the output of the evaluated examples export. Supplements ExportEvaluatedExamplesOutputConfig[google.cloud.automl.v1beta1.ExportEvaluatedExamplesOutputConfig].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportEvaluatedExamplesOutputConfig ¶
type ExportEvaluatedExamplesOutputConfig = src.ExportEvaluatedExamplesOutputConfig
Output configuration for ExportEvaluatedExamples Action. Note that this call is available only for 30 days since the moment the model was evaluated. The output depends on the domain, as follows (note that only examples from the TEST set are exported): - For Tables: [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with name `export_evaluated_examples_<model-display-name>_<timestamp-of-export-call>` where <model-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset an `evaluated_examples` table will be created. It will have all the same columns as the [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id] of the [dataset][google.cloud.automl.v1beta1.Model.dataset_id] from which the model was created, as they were at the moment of model's evaluation (this includes the target column with its ground truth), followed by a column called "predicted_<target_column>". That last column will contain the model's prediction result for each respective row, given as ARRAY of [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload], represented as STRUCT-s, containing TablesAnnotation[google.cloud.automl.v1beta1.TablesAnnotation].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportEvaluatedExamplesOutputConfig_BigqueryDestination ¶
type ExportEvaluatedExamplesOutputConfig_BigqueryDestination = src.ExportEvaluatedExamplesOutputConfig_BigqueryDestination
type ExportEvaluatedExamplesRequest ¶
type ExportEvaluatedExamplesRequest = src.ExportEvaluatedExamplesRequest
Request message for [AutoMl.ExportEvaluatedExamples][google.cloud.automl.v1beta1.AutoMl.ExportEvaluatedExamples].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportModelOperationMetadata ¶
type ExportModelOperationMetadata = src.ExportModelOperationMetadata
Details of ExportModel operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportModelOperationMetadata_ExportModelOutputInfo ¶
type ExportModelOperationMetadata_ExportModelOutputInfo = src.ExportModelOperationMetadata_ExportModelOutputInfo
Further describes the output of model export. Supplements ModelExportOutputConfig[google.cloud.automl.v1beta1.ModelExportOutputConfig].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ExportModelRequest ¶
type ExportModelRequest = src.ExportModelRequest
Request message for [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Float64Stats ¶
type Float64Stats = src.Float64Stats
The data statistics of a series of FLOAT64 values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Float64Stats_HistogramBucket ¶
type Float64Stats_HistogramBucket = src.Float64Stats_HistogramBucket
A bucket of a histogram.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GcrDestination ¶
type GcrDestination = src.GcrDestination
The GCR location where the image must be pushed to.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GcsDestination ¶
type GcsDestination = src.GcsDestination
The Google Cloud Storage location where the output is to be written to.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GcsSource ¶
The Google Cloud Storage location for the input content.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetAnnotationSpecRequest ¶
type GetAnnotationSpecRequest = src.GetAnnotationSpecRequest
Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1beta1.AutoMl.GetAnnotationSpec].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetColumnSpecRequest ¶
type GetColumnSpecRequest = src.GetColumnSpecRequest
Request message for [AutoMl.GetColumnSpec][google.cloud.automl.v1beta1.AutoMl.GetColumnSpec].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetDatasetRequest ¶
type GetDatasetRequest = src.GetDatasetRequest
Request message for [AutoMl.GetDataset][google.cloud.automl.v1beta1.AutoMl.GetDataset].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetModelEvaluationRequest ¶
type GetModelEvaluationRequest = src.GetModelEvaluationRequest
Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1beta1.AutoMl.GetModelEvaluation].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetModelRequest ¶
type GetModelRequest = src.GetModelRequest
Request message for [AutoMl.GetModel][google.cloud.automl.v1beta1.AutoMl.GetModel].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type GetTableSpecRequest ¶
type GetTableSpecRequest = src.GetTableSpecRequest
Request message for [AutoMl.GetTableSpec][google.cloud.automl.v1beta1.AutoMl.GetTableSpec].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Image ¶
A representation of an image. Only images up to 30MB in size are supported.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageClassificationDatasetMetadata ¶
type ImageClassificationDatasetMetadata = src.ImageClassificationDatasetMetadata
Dataset metadata that is specific to image classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageClassificationModelDeploymentMetadata ¶
type ImageClassificationModelDeploymentMetadata = src.ImageClassificationModelDeploymentMetadata
Model deployment metadata specific to Image Classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageClassificationModelMetadata ¶
type ImageClassificationModelMetadata = src.ImageClassificationModelMetadata
Model metadata for image classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageObjectDetectionAnnotation ¶
type ImageObjectDetectionAnnotation = src.ImageObjectDetectionAnnotation
Annotation details for image object detection.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageObjectDetectionDatasetMetadata ¶
type ImageObjectDetectionDatasetMetadata = src.ImageObjectDetectionDatasetMetadata
Dataset metadata specific to image object detection.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageObjectDetectionEvaluationMetrics ¶
type ImageObjectDetectionEvaluationMetrics = src.ImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageObjectDetectionModelDeploymentMetadata ¶
type ImageObjectDetectionModelDeploymentMetadata = src.ImageObjectDetectionModelDeploymentMetadata
Model deployment metadata specific to Image Object Detection.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImageObjectDetectionModelMetadata ¶
type ImageObjectDetectionModelMetadata = src.ImageObjectDetectionModelMetadata
Model metadata specific to image object detection.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Image_ImageBytes ¶
type Image_ImageBytes = src.Image_ImageBytes
type Image_InputConfig ¶
type Image_InputConfig = src.Image_InputConfig
type ImportDataOperationMetadata ¶
type ImportDataOperationMetadata = src.ImportDataOperationMetadata
Details of ImportData operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ImportDataRequest ¶
type ImportDataRequest = src.ImportDataRequest
Request message for [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type InputConfig ¶
type InputConfig = src.InputConfig
Input configuration for ImportData Action. The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones. The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are: - For Image Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO For MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg - For Image Object Detection: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined per line). If an image has not yet been labeled, then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX. For images which are known to not contain any bounding boxes, they should be labelled explictly as "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the BOUNDING_BOX. Sample rows: TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,, - For Video Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it shuold be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,, - For Video Object Tracking: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using one of the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_IDs can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it. TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,, - For Text Extraction: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which either imports text in-line or as documents. Any given .JSONL file must be 100MB or smaller. The in-line .JSONL file contains, per line, a proto that wraps a TextSnippet proto (in json representation) followed by one or more AnnotationPayload protos (called annotations), which have display_name and text_extraction detail populated. The given text is expected to be annotated exhaustively, for example, if you look for animals and text contains "dolphin" that is not labeled, then "dolphin" is assumed to not be an animal. Any given text snippet content must be 10KB or smaller, and also be UTF-8 NFC encoded (ASCII already is). The document .JSONL file contains, per line, a proto that wraps a Document proto. The Document proto must have either document_text or input_config set. In document_text case, the Document proto may also contain the spatial information of the document, including layout, document dimension and page number. In input_config case, only PDF documents are supported now, and each document may be up to 2MB large. Currently, annotations on documents cannot be specified at import. Three sample CSV rows: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl Sample in-line JSON Lines file for entity extraction (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "document_text": {"content": "dog cat"} "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 3, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, }, { "text_segment": { "start_offset": 4, "end_offset": 7, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.4, "y": 0.1}, {"x": 0.4, "y": 0.3}, {"x": 0.8, "y": 0.3}, {"x": 0.8, "y": 0.1}, ], }, "text_segment_type": TOKEN, } ], "document_dimensions": { "width": 8.27, "height": 11.69, "unit": INCH, } "page_count": 1, }, "annotations": [ { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 0, "end_offset": 3}} }, { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 4, "end_offset": 7}} } ], }\n { "text_snippet": { "content": "This dog is good." }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 5, "end_offset": 8} } } ] } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } } - For Text Classification: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, i.e. prefixed by "gs://", it will be treated as a GCS_FILE_PATH, else if the content is enclosed within double quotes (""), it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content excluding quotes is treated as to be imported text snippet. In both cases, the text snippet/file size must be within 128kB. Maximum 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood TRAIN,gs://folder/content.txt,SlowService TEST,"Typically always bad service there.",RudeService VALIDATE,"Stomach ache to go.",BadFood - For Text Sentiment: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content itself is treated as to be imported text snippet. In both cases, the text snippet must be up to 500 characters long. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 TRAIN,"I need this product so bad",3 TEST,"Thank you for this product.",4 VALIDATE,gs://folder/content.txt,2 - For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source] can be used. All inputs is concatenated into a single [primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name] For gcs_source: CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller. First three sample rows of a CSV file: "Id","First Name","Last Name","Dob","Addresses" "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} For bigquery_source: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel. Definitions: ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED" Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference. GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png". LABEL = A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions. INSTANCE_ID = A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which. BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,, A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle. VERTEX = COORDINATE,COORDINATE First coordinate is horizontal (x), the second is vertical (y). COORDINATE = A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left. TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes (""). SENTIMENT = An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one - it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be huge. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type InputConfig_BigquerySource ¶
type InputConfig_BigquerySource = src.InputConfig_BigquerySource
type InputConfig_GcsSource ¶
type InputConfig_GcsSource = src.InputConfig_GcsSource
type ListColumnSpecsRequest ¶
type ListColumnSpecsRequest = src.ListColumnSpecsRequest
Request message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListColumnSpecsResponse ¶
type ListColumnSpecsResponse = src.ListColumnSpecsResponse
Response message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListDatasetsRequest ¶
type ListDatasetsRequest = src.ListDatasetsRequest
Request message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListDatasetsResponse ¶
type ListDatasetsResponse = src.ListDatasetsResponse
Response message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListModelEvaluationsRequest ¶
type ListModelEvaluationsRequest = src.ListModelEvaluationsRequest
Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListModelEvaluationsResponse ¶
type ListModelEvaluationsResponse = src.ListModelEvaluationsResponse
Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListModelsRequest ¶
type ListModelsRequest = src.ListModelsRequest
Request message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListModelsResponse ¶
type ListModelsResponse = src.ListModelsResponse
Response message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListTableSpecsRequest ¶
type ListTableSpecsRequest = src.ListTableSpecsRequest
Request message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ListTableSpecsResponse ¶
type ListTableSpecsResponse = src.ListTableSpecsResponse
Response message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Model ¶
API proto representing a trained machine learning model.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ModelEvaluation ¶
type ModelEvaluation = src.ModelEvaluation
Evaluation results of a model.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ModelEvaluation_ClassificationEvaluationMetrics ¶
type ModelEvaluation_ClassificationEvaluationMetrics = src.ModelEvaluation_ClassificationEvaluationMetrics
type ModelEvaluation_ImageObjectDetectionEvaluationMetrics ¶
type ModelEvaluation_ImageObjectDetectionEvaluationMetrics = src.ModelEvaluation_ImageObjectDetectionEvaluationMetrics
type ModelEvaluation_RegressionEvaluationMetrics ¶
type ModelEvaluation_RegressionEvaluationMetrics = src.ModelEvaluation_RegressionEvaluationMetrics
type ModelEvaluation_TextExtractionEvaluationMetrics ¶
type ModelEvaluation_TextExtractionEvaluationMetrics = src.ModelEvaluation_TextExtractionEvaluationMetrics
type ModelEvaluation_TextSentimentEvaluationMetrics ¶
type ModelEvaluation_TextSentimentEvaluationMetrics = src.ModelEvaluation_TextSentimentEvaluationMetrics
type ModelEvaluation_TranslationEvaluationMetrics ¶
type ModelEvaluation_TranslationEvaluationMetrics = src.ModelEvaluation_TranslationEvaluationMetrics
type ModelEvaluation_VideoObjectTrackingEvaluationMetrics ¶
type ModelEvaluation_VideoObjectTrackingEvaluationMetrics = src.ModelEvaluation_VideoObjectTrackingEvaluationMetrics
type ModelExportOutputConfig ¶
type ModelExportOutputConfig = src.ModelExportOutputConfig
Output configuration for ModelExport Action.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type ModelExportOutputConfig_GcrDestination ¶
type ModelExportOutputConfig_GcrDestination = src.ModelExportOutputConfig_GcrDestination
type ModelExportOutputConfig_GcsDestination ¶
type ModelExportOutputConfig_GcsDestination = src.ModelExportOutputConfig_GcsDestination
type Model_DeploymentState ¶
type Model_DeploymentState = src.Model_DeploymentState
Deployment state of the model.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Model_ImageClassificationModelMetadata ¶
type Model_ImageClassificationModelMetadata = src.Model_ImageClassificationModelMetadata
type Model_ImageObjectDetectionModelMetadata ¶
type Model_ImageObjectDetectionModelMetadata = src.Model_ImageObjectDetectionModelMetadata
type Model_TablesModelMetadata ¶
type Model_TablesModelMetadata = src.Model_TablesModelMetadata
type Model_TextClassificationModelMetadata ¶
type Model_TextClassificationModelMetadata = src.Model_TextClassificationModelMetadata
type Model_TextExtractionModelMetadata ¶
type Model_TextExtractionModelMetadata = src.Model_TextExtractionModelMetadata
type Model_TextSentimentModelMetadata ¶
type Model_TextSentimentModelMetadata = src.Model_TextSentimentModelMetadata
type Model_TranslationModelMetadata ¶
type Model_TranslationModelMetadata = src.Model_TranslationModelMetadata
type Model_VideoClassificationModelMetadata ¶
type Model_VideoClassificationModelMetadata = src.Model_VideoClassificationModelMetadata
type Model_VideoObjectTrackingModelMetadata ¶
type Model_VideoObjectTrackingModelMetadata = src.Model_VideoObjectTrackingModelMetadata
type NormalizedVertex ¶
type NormalizedVertex = src.NormalizedVertex
A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type OperationMetadata ¶
type OperationMetadata = src.OperationMetadata
Metadata used across all long running operations returned by AutoML API.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type OperationMetadata_BatchPredictDetails ¶
type OperationMetadata_BatchPredictDetails = src.OperationMetadata_BatchPredictDetails
type OperationMetadata_CreateModelDetails ¶
type OperationMetadata_CreateModelDetails = src.OperationMetadata_CreateModelDetails
type OperationMetadata_DeleteDetails ¶
type OperationMetadata_DeleteDetails = src.OperationMetadata_DeleteDetails
type OperationMetadata_DeployModelDetails ¶
type OperationMetadata_DeployModelDetails = src.OperationMetadata_DeployModelDetails
type OperationMetadata_ExportDataDetails ¶
type OperationMetadata_ExportDataDetails = src.OperationMetadata_ExportDataDetails
type OperationMetadata_ExportEvaluatedExamplesDetails ¶
type OperationMetadata_ExportEvaluatedExamplesDetails = src.OperationMetadata_ExportEvaluatedExamplesDetails
type OperationMetadata_ExportModelDetails ¶
type OperationMetadata_ExportModelDetails = src.OperationMetadata_ExportModelDetails
type OperationMetadata_ImportDataDetails ¶
type OperationMetadata_ImportDataDetails = src.OperationMetadata_ImportDataDetails
type OperationMetadata_UndeployModelDetails ¶
type OperationMetadata_UndeployModelDetails = src.OperationMetadata_UndeployModelDetails
type OutputConfig ¶
type OutputConfig = src.OutputConfig
- For Translation: CSV file `translation.csv`, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language) - For Tables: Output depends on whether the dataset was imported from GCS or BigQuery. GCS case: [gcs_destination][google.cloud.automl.v1beta1.OutputConfig.gcs_destination] must be set. Exported are CSV file(s) `tables_1.csv`, `tables_2.csv`,...,`tables_N.csv` with each having as header line the table's column names, and all other lines contain values for the header columns. BigQuery case: [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with name `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>` where <automl-dataset-display-name> will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that dataset a new table called `primary_table` will be created, and filled with precisely the same data as this obtained on import.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type OutputConfig_BigqueryDestination ¶
type OutputConfig_BigqueryDestination = src.OutputConfig_BigqueryDestination
type OutputConfig_GcsDestination ¶
type OutputConfig_GcsDestination = src.OutputConfig_GcsDestination
type PredictRequest ¶
type PredictRequest = src.PredictRequest
Request message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type PredictResponse ¶
type PredictResponse = src.PredictResponse
Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type PredictionServiceClient ¶
type PredictionServiceClient = src.PredictionServiceClient
PredictionServiceClient is the client API for PredictionService service. For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
func NewPredictionServiceClient ¶
func NewPredictionServiceClient(cc grpc.ClientConnInterface) PredictionServiceClient
Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1beta1/automlpb
type PredictionServiceServer ¶
type PredictionServiceServer = src.PredictionServiceServer
PredictionServiceServer is the server API for PredictionService service.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type RegressionEvaluationMetrics ¶
type RegressionEvaluationMetrics = src.RegressionEvaluationMetrics
Metrics for regression problems.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type Row ¶
A representation of a row in a relational table.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type StringStats ¶
type StringStats = src.StringStats
The data statistics of a series of STRING values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type StringStats_UnigramStats ¶
type StringStats_UnigramStats = src.StringStats_UnigramStats
The statistics of a unigram.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type StructStats ¶
type StructStats = src.StructStats
The data statistics of a series of STRUCT values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type StructType ¶
type StructType = src.StructType
`StructType` defines the DataType-s of a [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT] type.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TableSpec ¶
A specification of a relational table. The table's schema is represented via its child column specs. It is pre-populated as part of ImportData by schema inference algorithm, the version of which is a required parameter of ImportData InputConfig. Note: While working with a table, at times the schema may be inconsistent with the data in the table (e.g. string in a FLOAT64 column). The consistency validation is done upon creation of a model. Used by: - Tables
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TablesAnnotation ¶
type TablesAnnotation = src.TablesAnnotation
Contains annotation details specific to Tables.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TablesDatasetMetadata ¶
type TablesDatasetMetadata = src.TablesDatasetMetadata
Metadata for a dataset used for AutoML Tables.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TablesModelColumnInfo ¶
type TablesModelColumnInfo = src.TablesModelColumnInfo
An information specific to given column and Tables Model, in context of the Model and the predictions created by it.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TablesModelMetadata ¶
type TablesModelMetadata = src.TablesModelMetadata
Model metadata specific to AutoML Tables.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TablesModelMetadata_OptimizationObjectivePrecisionValue ¶
type TablesModelMetadata_OptimizationObjectivePrecisionValue = src.TablesModelMetadata_OptimizationObjectivePrecisionValue
type TablesModelMetadata_OptimizationObjectiveRecallValue ¶
type TablesModelMetadata_OptimizationObjectiveRecallValue = src.TablesModelMetadata_OptimizationObjectiveRecallValue
type TextClassificationDatasetMetadata ¶
type TextClassificationDatasetMetadata = src.TextClassificationDatasetMetadata
Dataset metadata for classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextClassificationModelMetadata ¶
type TextClassificationModelMetadata = src.TextClassificationModelMetadata
Model metadata that is specific to text classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextExtractionAnnotation ¶
type TextExtractionAnnotation = src.TextExtractionAnnotation
Annotation for identifying spans of text.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextExtractionAnnotation_TextSegment ¶
type TextExtractionAnnotation_TextSegment = src.TextExtractionAnnotation_TextSegment
type TextExtractionDatasetMetadata ¶
type TextExtractionDatasetMetadata = src.TextExtractionDatasetMetadata
Dataset metadata that is specific to text extraction
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextExtractionEvaluationMetrics ¶
type TextExtractionEvaluationMetrics = src.TextExtractionEvaluationMetrics
Model evaluation metrics for text extraction problems.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry ¶
type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry = src.TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
Metrics for a single confidence threshold.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextExtractionModelMetadata ¶
type TextExtractionModelMetadata = src.TextExtractionModelMetadata
Model metadata that is specific to text extraction.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSegment ¶
type TextSegment = src.TextSegment
A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSentimentAnnotation ¶
type TextSentimentAnnotation = src.TextSentimentAnnotation
Contains annotation details specific to text sentiment.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSentimentDatasetMetadata ¶
type TextSentimentDatasetMetadata = src.TextSentimentDatasetMetadata
Dataset metadata for text sentiment.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSentimentEvaluationMetrics ¶
type TextSentimentEvaluationMetrics = src.TextSentimentEvaluationMetrics
Model evaluation metrics for text sentiment problems.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSentimentModelMetadata ¶
type TextSentimentModelMetadata = src.TextSentimentModelMetadata
Model metadata that is specific to text sentiment.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TextSnippet ¶
type TextSnippet = src.TextSnippet
A representation of a text snippet.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TimeSegment ¶
type TimeSegment = src.TimeSegment
A time period inside of an example that has a time dimension (e.g. video).
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TimestampStats ¶
type TimestampStats = src.TimestampStats
The data statistics of a series of TIMESTAMP values.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TimestampStats_GranularStats ¶
type TimestampStats_GranularStats = src.TimestampStats_GranularStats
Stats split by a defined in context granularity.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TranslationAnnotation ¶
type TranslationAnnotation = src.TranslationAnnotation
Annotation details specific to translation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TranslationDatasetMetadata ¶
type TranslationDatasetMetadata = src.TranslationDatasetMetadata
Dataset metadata that is specific to translation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TranslationEvaluationMetrics ¶
type TranslationEvaluationMetrics = src.TranslationEvaluationMetrics
Evaluation metrics for the dataset.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TranslationModelMetadata ¶
type TranslationModelMetadata = src.TranslationModelMetadata
Model metadata that is specific to translation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type TypeCode ¶
`TypeCode` is used as a part of DataType[google.cloud.automl.v1beta1.DataType].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UndeployModelOperationMetadata ¶
type UndeployModelOperationMetadata = src.UndeployModelOperationMetadata
Details of UndeployModel operation.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UndeployModelRequest ¶
type UndeployModelRequest = src.UndeployModelRequest
Request message for [AutoMl.UndeployModel][google.cloud.automl.v1beta1.AutoMl.UndeployModel].
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UnimplementedAutoMlServer ¶
type UnimplementedAutoMlServer = src.UnimplementedAutoMlServer
UnimplementedAutoMlServer can be embedded to have forward compatible implementations.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UnimplementedPredictionServiceServer ¶
type UnimplementedPredictionServiceServer = src.UnimplementedPredictionServiceServer
UnimplementedPredictionServiceServer can be embedded to have forward compatible implementations.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UpdateColumnSpecRequest ¶
type UpdateColumnSpecRequest = src.UpdateColumnSpecRequest
Request message for [AutoMl.UpdateColumnSpec][google.cloud.automl.v1beta1.AutoMl.UpdateColumnSpec]
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UpdateDatasetRequest ¶
type UpdateDatasetRequest = src.UpdateDatasetRequest
Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1beta1.AutoMl.UpdateDataset]
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type UpdateTableSpecRequest ¶
type UpdateTableSpecRequest = src.UpdateTableSpecRequest
Request message for [AutoMl.UpdateTableSpec][google.cloud.automl.v1beta1.AutoMl.UpdateTableSpec]
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoClassificationAnnotation ¶
type VideoClassificationAnnotation = src.VideoClassificationAnnotation
Contains annotation details specific to video classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoClassificationDatasetMetadata ¶
type VideoClassificationDatasetMetadata = src.VideoClassificationDatasetMetadata
Dataset metadata specific to video classification. All Video Classification datasets are treated as multi label.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoClassificationModelMetadata ¶
type VideoClassificationModelMetadata = src.VideoClassificationModelMetadata
Model metadata specific to video classification.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoObjectTrackingAnnotation ¶
type VideoObjectTrackingAnnotation = src.VideoObjectTrackingAnnotation
Annotation details for video object tracking.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoObjectTrackingDatasetMetadata ¶
type VideoObjectTrackingDatasetMetadata = src.VideoObjectTrackingDatasetMetadata
Dataset metadata specific to video object tracking.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoObjectTrackingEvaluationMetrics ¶
type VideoObjectTrackingEvaluationMetrics = src.VideoObjectTrackingEvaluationMetrics
Model evaluation metrics for video object tracking problems. Evaluates prediction quality of both labeled bounding boxes and labeled tracks (i.e. series of bounding boxes sharing same label and instance ID).
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
type VideoObjectTrackingModelMetadata ¶
type VideoObjectTrackingModelMetadata = src.VideoObjectTrackingModelMetadata
Model metadata specific to video object tracking.
Deprecated: Please use types in: cloud.google.com/go/automl/apiv1beta1/automlpb
Source Files ¶
alias.go
- Version
- v0.0.0-20250219182151-9fdb1cabc7b2 (latest)
- Published
- Feb 19, 2025
- Platform
- linux/amd64
- Imports
- 2 packages
- Last checked
- 1 hour ago –
Tools for package owners.