package dualcmplx
import "gonum.org/v1/gonum/num/dualcmplx"
Package dualcmplx provides the anti-commutative dual complex numeric type and functions.
See https://arxiv.org/abs/1601.01754v1 for details.
Code:play
Output: Code:play
Output: Code:play
Output: Code:play
Output: Code:play
Output:Example¶
package main
import (
"fmt"
"math"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/num/dualcmplx"
)
// point is a 2-dimensional point/vector.
type point struct {
x, y float64
}
// raise raises the dimensionality of a point to a complex.
func raise(p point) complex128 {
return complex(p.x, p.y)
}
// raiseDual raises the dimensionality of a point to a dual complex number.
func raiseDual(p point) dualcmplx.Number {
return dualcmplx.Number{
Real: 1,
Dual: complex(p.x, p.y),
}
}
// transform performs the transformation of p by the given dual complex numbers.
// The transformations are normalized to unit vectors.
func transform(p point, by ...dualcmplx.Number) point {
if len(by) == 0 {
return p
}
// Ensure the modulus of by is correctly scaled.
for i := range by {
if len := dualcmplx.Abs(by[i]); len != 1 {
by[i].Real *= complex(1/len, 0)
}
}
// Perform the transformations.
z := by[0]
for _, o := range by[1:] {
z = dualcmplx.Mul(o, z)
}
pp := dualcmplx.Mul(dualcmplx.Mul(z, raiseDual(p)), dualcmplx.Conj(z))
// Extract the point.
return point{x: real(pp.Dual), y: imag(pp.Dual)}
}
func main() {
// Translate a 1×1 square by [3, 4] and rotate it 90° around the
// origin.
fmt.Println("square:")
// Construct a displacement.
displace := dualcmplx.Number{
Real: 1,
Dual: 0.5 * raise(point{3, 4}),
}
// Construct a rotation.
alpha := math.Pi / 2
rotate := dualcmplx.Number{Real: complex(math.Cos(alpha/2), math.Sin(alpha/2))}
for i, p := range []point{
{x: 0, y: 0},
{x: 0, y: 1},
{x: 1, y: 0},
{x: 1, y: 1},
} {
pp := transform(p,
displace, rotate,
)
// Clean up floating point error for clarity.
pp.x = scalar.Round(pp.x, 2)
pp.y = scalar.Round(pp.y, 2)
fmt.Printf(" %d %+v -> %+v\n", i, p, pp)
}
// Rotate a line segment 90° around its lower end [2, 2].
fmt.Println("\nline segment:")
// Construct a displacement to the origin from the lower end...
origin := dualcmplx.Number{
Real: 1,
Dual: 0.5 * raise(point{-2, -2}),
}
// ... and back from the origin to the lower end.
replace := dualcmplx.Number{
Real: 1,
Dual: -origin.Dual,
}
for i, p := range []point{
{x: 2, y: 2},
{x: 2, y: 3},
} {
pp := transform(p,
origin, // Displace to origin.
rotate, // Rotate around axis.
replace, // Displace back to original location.
)
// Clean up floating point error for clarity.
pp.x = scalar.Round(pp.x, 2)
pp.y = scalar.Round(pp.y, 2)
fmt.Printf(" %d %+v -> %+v\n", i, p, pp)
}
}
square:
0 {x:0 y:0} -> {x:-4 y:3}
1 {x:0 y:1} -> {x:-5 y:3}
2 {x:1 y:0} -> {x:-4 y:4}
3 {x:1 y:1} -> {x:-5 y:4}
line segment:
0 {x:2 y:2} -> {x:2 y:2}
1 {x:2 y:3} -> {x:1 y:2}
Example (Displace)¶
package main
import (
"fmt"
"gonum.org/v1/gonum/num/dualcmplx"
)
func main() {
// Displace a point [3, 4] by [4, 3].
// Point to be transformed in the dual imaginary vector.
p := dualcmplx.Number{Real: 1, Dual: 3 + 4i}
// Displacement vector, half [4, 3], in the dual imaginary vector.
d := dualcmplx.Number{Real: 1, Dual: 2 + 1.5i}
fmt.Printf("%.0f\n", dualcmplx.Mul(dualcmplx.Mul(d, p), dualcmplx.Conj(d)).Dual)
}
(7+7i)
Example (DisplaceAndRotate)¶
package main
import (
"fmt"
"math"
"gonum.org/v1/gonum/num/dualcmplx"
)
func main() {
// Displace a point [3, 4] by [4, 3] and then rotate
// by 90° around the origin.
// Point to be transformed in the dual imaginary vector.
p := dualcmplx.Number{Real: 1, Dual: 3 + 4i}
// Displacement vector, half [4, 3], in the dual imaginary vector.
d := dualcmplx.Number{Real: 1, Dual: 2 + 1.5i}
// Rotation in the real complex number.
r := dualcmplx.Number{Real: complex(math.Cos(math.Pi/4), math.Sin(math.Pi/4))}
// Combine the rotation and displacement so
// the displacement is performed first.
q := dualcmplx.Mul(r, d)
fmt.Printf("%.0f\n", dualcmplx.Mul(dualcmplx.Mul(q, p), dualcmplx.Conj(q)).Dual)
}
(-7+7i)
Example (Rotate)¶
package main
import (
"fmt"
"math"
"gonum.org/v1/gonum/num/dualcmplx"
)
func main() {
// Rotate a point [3, 4] by 90° around the origin.
// Point to be transformed in the dual imaginary vector.
p := dualcmplx.Number{Real: 1, Dual: 3 + 4i}
// Half the rotation in the real complex number.
r := dualcmplx.Number{Real: complex(math.Cos(math.Pi/4), math.Sin(math.Pi/4))}
fmt.Printf("%.0f\n", dualcmplx.Mul(dualcmplx.Mul(r, p), dualcmplx.Conj(r)).Dual)
}
(-4+3i)
Example (RotateAndDisplace)¶
package main
import (
"fmt"
"math"
"gonum.org/v1/gonum/num/dualcmplx"
)
func main() {
// Rotate a point [3, 4] by 90° around the origin and then
// displace by [4, 3].
// Point to be transformed in the dual imaginary vector.
p := dualcmplx.Number{Real: 1, Dual: 3 + 4i}
// Displacement vector, half [4, 3], in the dual imaginary vector.
d := dualcmplx.Number{Real: 1, Dual: 2 + 1.5i}
// Rotation in the real complex number.
r := dualcmplx.Number{Real: complex(math.Cos(math.Pi/4), math.Sin(math.Pi/4))}
// Combine the rotation and displacement so
// the displacement is performed first.
q := dualcmplx.Mul(d, r)
fmt.Printf("%.0f\n", dualcmplx.Mul(dualcmplx.Mul(q, p), dualcmplx.Conj(q)).Dual)
}
(0+6i)
Index ¶
- func Abs(d Number) float64
- type Number
- func Add(x, y Number) Number
- func Conj(d Number) Number
- func Exp(d Number) Number
- func Inv(d Number) Number
- func Log(d Number) Number
- func Mul(x, y Number) Number
- func Pow(d, p Number) Number
- func PowReal(d Number, p float64) Number
- func Scale(f float64, d Number) Number
- func Sqrt(d Number) Number
- func Sub(x, y Number) Number
- func (d Number) Format(fs fmt.State, c rune)
Examples ¶
Functions ¶
func Abs ¶
Abs returns the absolute value of d.
Types ¶
type Number ¶
type Number struct { Real, Dual complex128 }
Number is a float64 precision anti-commutative dual complex number.
func Add ¶
Add returns the sum of x and y.
func Conj ¶
Conj returns the conjugate of d₁+d₂ϵ, d̅₁+d₂ϵ.
func Exp ¶
Exp returns e**q, the base-e exponential of d.
Special cases are:
Exp(+Inf) = +Inf Exp(NaN) = NaN
Very large values overflow to 0 or +Inf. Very small values underflow to 1.
func Inv ¶
Inv returns the dual inverse of d.
func Log ¶
Log returns the natural logarithm of d.
Special cases are:
Log(+Inf) = (+Inf+0ϵ) Log(0) = (-Inf±Infϵ) Log(x < 0) = NaN Log(NaN) = NaN
func Mul ¶
Mul returns the dual product of x and y, x×y.
func Pow ¶
Pow returns d**p, the base-d exponential of p.
func PowReal ¶
PowReal returns d**p, the base-d exponential of p.
Special cases are (in order):
PowReal(NaN+xϵ, ±0) = 1+NaNϵ for any x Pow(0+xϵ, y) = 0+Infϵ for all y < 1. Pow(0+xϵ, y) = 0 for all y > 1. PowReal(x, ±0) = 1 for any x PowReal(1+xϵ, y) = 1+xyϵ for any y Pow(Inf, y) = +Inf+NaNϵ for y > 0 Pow(Inf, y) = +0+NaNϵ for y < 0 PowReal(x, 1) = x for any x PowReal(NaN+xϵ, y) = NaN+NaNϵ PowReal(x, NaN) = NaN+NaNϵ PowReal(-1, ±Inf) = 1 PowReal(x+0ϵ, +Inf) = +Inf+NaNϵ for |x| > 1 PowReal(x+yϵ, +Inf) = +Inf for |x| > 1 PowReal(x, -Inf) = +0+NaNϵ for |x| > 1 PowReal(x, +Inf) = +0+NaNϵ for |x| < 1 PowReal(x+0ϵ, -Inf) = +Inf+NaNϵ for |x| < 1 PowReal(x, -Inf) = +Inf-Infϵ for |x| < 1 PowReal(+Inf, y) = +Inf for y > 0 PowReal(+Inf, y) = +0 for y < 0 PowReal(-Inf, y) = Pow(-0, -y)
func Scale ¶
Scale returns d scaled by f.
func Sqrt ¶
Sqrt returns the square root of d.
Special cases are:
Sqrt(+Inf) = +Inf Sqrt(±0) = (±0+Infϵ) Sqrt(x < 0) = NaN Sqrt(NaN) = NaN
func Sub ¶
Sub returns the difference of x and y, x-y.
func (Number) Format ¶
Format implements fmt.Formatter.
Source Files ¶
doc.go dual.go
- Version
- v0.15.1 (latest)
- Published
- Aug 16, 2024
- Platform
- linux/amd64
- Imports
- 4 packages
- Last checked
- 12 hours ago –
Tools for package owners.