package cel

import "github.com/google/cel-go/cel"

Package cel defines the top-level interface for the Common Expression Language (CEL).

CEL is a non-Turing complete expression language designed to parse, check, and evaluate expressions against user-defined environments.

Example

Code:play 

package main

import (
	"fmt"
	"log"

	"github.com/google/cel-go/cel"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
)

func main() {
	// Create the CEL environment with declarations for the input attributes and the extension functions.
	// In many cases the desired functionality will be present in a built-in function.
	e, err := cel.NewEnv(
		// Variable identifiers used within this expression.
		cel.Variable("i", cel.StringType),
		cel.Variable("you", cel.StringType),
		// Function to generate a greeting from one person to another: i.greet(you)
		cel.Function("greet",
			cel.MemberOverload("string_greet_string", []*cel.Type{cel.StringType, cel.StringType}, cel.StringType,
				cel.BinaryBinding(func(lhs, rhs ref.Val) ref.Val {
					return types.String(fmt.Sprintf("Hello %s! Nice to meet you, I'm %s.\n", rhs, lhs))
				}),
			),
		),
	)
	if err != nil {
		log.Fatalf("environment creation error: %s\n", err)
	}

	// Compile the expression.
	ast, iss := e.Compile("i.greet(you)")
	if iss.Err() != nil {
		log.Fatalln(iss.Err())
	}

	// Create the program.
	prg, err := e.Program(ast)
	if err != nil {
		log.Fatalf("program creation error: %s\n", err)
	}

	// Evaluate the program against some inputs. Note: the details return is not used.
	out, _, err := prg.Eval(map[string]any{
		// Native values are converted to CEL values under the covers.
		"i": "CEL",
		// Values may also be lazily supplied.
		"you": func() ref.Val { return types.String("world") },
	})
	if err != nil {
		log.Fatalf("runtime error: %s\n", err)
	}

	fmt.Println(out)
}

Output:

Hello world! Nice to meet you, I'm CEL.
Example (GlobalOverload)

Code:play 

package main

import (
	"fmt"
	"log"

	"github.com/google/cel-go/cel"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
)

func main() {
	// The GlobalOverload example demonstrates how to define global overload function.
	// Create the CEL environment with declarations for the input attributes and
	// the desired extension functions. In many cases the desired functionality will
	// be present in a built-in function.
	e, err := cel.NewEnv(
		// Identifiers used within this expression.
		cel.Variable("i", cel.StringType),
		cel.Variable("you", cel.StringType),
		// Function to generate shake_hands between two people.
		//    shake_hands(i,you)
		cel.Function("shake_hands",
			cel.Overload("shake_hands_string_string", []*cel.Type{cel.StringType, cel.StringType}, cel.StringType,
				cel.BinaryBinding(func(arg1, arg2 ref.Val) ref.Val {
					return types.String(fmt.Sprintf("%v and %v are shaking hands.\n", arg1, arg2))
				}),
			),
		),
	)
	if err != nil {
		log.Fatalf("environment creation error: %s\n", err)
	}

	// Compile the expression.
	ast, iss := e.Compile(`shake_hands(i,you)`)
	if iss.Err() != nil {
		log.Fatalln(iss.Err())
	}

	// Create the program.
	prg, err := e.Program(ast)
	if err != nil {
		log.Fatalf("program creation error: %s\n", err)
	}

	// Evaluate the program against some inputs. Note: the details return is not used.
	out, _, err := prg.Eval(map[string]any{
		"i":   "CEL",
		"you": func() ref.Val { return types.String("world") },
	})
	if err != nil {
		log.Fatalf("runtime error: %s\n", err)
	}

	fmt.Println(out)
}

Output:

CEL and world are shaking hands.
Example (StatefulOverload)

Code:play 

package main

import (
	"context"
	"fmt"
	"log"

	"github.com/google/cel-go/cel"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
)

func main() {
	// makeFetch produces a consistent function signature with a different function
	// implementation depending on the provided context.
	makeFetch := func(ctx any) cel.EnvOption {
		fn := func(arg ref.Val) ref.Val {
			return types.NewErr("stateful context not bound")
		}
		if ctx != nil {
			fn = func(resource ref.Val) ref.Val {
				return types.DefaultTypeAdapter.NativeToValue(
					ctx.(context.Context).Value(contextString(string(resource.(types.String)))),
				)
			}
		}
		return cel.Function("fetch",
			cel.Overload("fetch_string",
				[]*cel.Type{cel.StringType}, cel.StringType,
				cel.UnaryBinding(fn),
			),
		)
	}

	// The base environment declares the fetch function with a dummy binding that errors
	// if it is invoked without being replaced by a subsequent call to `baseEnv.Extend`
	baseEnv, err := cel.NewEnv(
		// Identifiers used within this expression.
		cel.Variable("resource", cel.StringType),
		// Function to fetch a resource.
		//    fetch(resource)
		makeFetch(nil),
	)
	if err != nil {
		log.Fatalf("environment creation error: %s\n", err)
	}
	ast, iss := baseEnv.Compile("fetch('my-resource') == 'my-value'")
	if iss.Err() != nil {
		log.Fatalf("Compile() failed: %v", iss.Err())
	}

	// The runtime environment extends the base environment with a contextual binding for
	// the 'fetch' function.
	ctx := context.WithValue(context.TODO(), contextString("my-resource"), "my-value")
	runtimeEnv, err := baseEnv.Extend(makeFetch(ctx))
	if err != nil {
		log.Fatalf("baseEnv.Extend() failed with error: %s\n", err)
	}
	prg, err := runtimeEnv.Program(ast)
	if err != nil {
		log.Fatalf("runtimeEnv.Program() error: %s\n", err)
	}
	out, _, err := prg.Eval(cel.NoVars())
	if err != nil {
		log.Fatalf("runtime error: %s\n", err)
	}

	fmt.Println(out)
}

type contextString string

Output:

true

Index

Examples

Constants

const (
	// DynKind represents a dynamic type. This kind only exists at type-check time.
	DynKind Kind = types.DynKind

	// AnyKind represents a google.protobuf.Any type. This kind only exists at type-check time.
	AnyKind = types.AnyKind

	// BoolKind represents a boolean type.
	BoolKind = types.BoolKind

	// BytesKind represents a bytes type.
	BytesKind = types.BytesKind

	// DoubleKind represents a double type.
	DoubleKind = types.DoubleKind

	// DurationKind represents a CEL duration type.
	DurationKind = types.DurationKind

	// IntKind represents an integer type.
	IntKind = types.IntKind

	// ListKind represents a list type.
	ListKind = types.ListKind

	// MapKind represents a map type.
	MapKind = types.MapKind

	// NullTypeKind represents a null type.
	NullTypeKind = types.NullTypeKind

	// OpaqueKind represents an abstract type which has no accessible fields.
	OpaqueKind = types.OpaqueKind

	// StringKind represents a string type.
	StringKind = types.StringKind

	// StructKind represents a structured object with typed fields.
	StructKind = types.StructKind

	// TimestampKind represents a a CEL time type.
	TimestampKind = types.TimestampKind

	// TypeKind represents the CEL type.
	TypeKind = types.TypeKind

	// TypeParamKind represents a parameterized type whose type name will be resolved at type-check time, if possible.
	TypeParamKind = types.TypeParamKind

	// UintKind represents a uint type.
	UintKind = types.UintKind
)
const (

	// HomogeneousAggregateLiteralExemptFunctions is the ValidatorConfig key used to configure
	// the set of function names which are exempt from homogeneous type checks. The expected type
	// is a string list of function names.
	//
	// As an example, the `<string>.format([args])` call expects the input arguments list to be
	// comprised of a variety of types which correspond to the types expected by the format control
	// clauses; however, all other uses of a mixed element type list, would be unexpected.
	HomogeneousAggregateLiteralExemptFunctions = homogeneousValidatorName + ".exempt"
)

Variables

var (
	// AnyType represents the google.protobuf.Any type.
	AnyType = types.AnyType
	// BoolType represents the bool type.
	BoolType = types.BoolType
	// BytesType represents the bytes type.
	BytesType = types.BytesType
	// DoubleType represents the double type.
	DoubleType = types.DoubleType
	// DurationType represents the CEL duration type.
	DurationType = types.DurationType
	// DynType represents a dynamic CEL type whose type will be determined at runtime from context.
	DynType = types.DynType
	// IntType represents the int type.
	IntType = types.IntType
	// NullType represents the type of a null value.
	NullType = types.NullType
	// StringType represents the string type.
	StringType = types.StringType
	// TimestampType represents the time type.
	TimestampType = types.TimestampType
	// TypeType represents a CEL type
	TypeType = types.TypeType
	// UintType represents a uint type.
	UintType = types.UintType

	// ListType creates an instances of a list type value with the provided element type.
	ListType = types.NewListType
	// MapType creates an instance of a map type value with the provided key and value types.
	MapType = types.NewMapType
	// NullableType creates an instance of a nullable type with the provided wrapped type.
	//
	// Note: only primitive types are supported as wrapped types.
	NullableType = types.NewNullableType
	// OptionalType creates an abstract parameterized type instance corresponding to CEL's notion of optional.
	OptionalType = types.NewOptionalType
	// OpaqueType creates an abstract parameterized type with a given name.
	OpaqueType = types.NewOpaqueType
	// ObjectType creates a type references to an externally defined type, e.g. a protobuf message type.
	ObjectType = types.NewObjectType
	// TypeParamType creates a parameterized type instance.
	TypeParamType = types.NewTypeParamType
)
var (

	// HasMacro expands "has(m.f)" which tests the presence of a field, avoiding the need to
	// specify the field as a string.
	HasMacro = parser.HasMacro

	// AllMacro expands "range.all(var, predicate)" into a comprehension which ensures that all
	// elements in the range satisfy the predicate.
	AllMacro = parser.AllMacro

	// ExistsMacro expands "range.exists(var, predicate)" into a comprehension which ensures that
	// some element in the range satisfies the predicate.
	ExistsMacro = parser.ExistsMacro

	// ExistsOneMacro expands "range.exists_one(var, predicate)", which is true if for exactly one
	// element in range the predicate holds.
	ExistsOneMacro = parser.ExistsOneMacro

	// MapMacro expands "range.map(var, function)" into a comprehension which applies the function
	// to each element in the range to produce a new list.
	MapMacro = parser.MapMacro

	// MapFilterMacro expands "range.map(var, predicate, function)" into a comprehension which
	// first filters the elements in the range by the predicate, then applies the transform function
	// to produce a new list.
	MapFilterMacro = parser.MapFilterMacro

	// FilterMacro expands "range.filter(var, predicate)" into a comprehension which filters
	// elements in the range, producing a new list from the elements that satisfy the predicate.
	FilterMacro = parser.FilterMacro

	// StandardMacros provides an alias to all the CEL macros defined in the standard environment.
	StandardMacros = []Macro{
		HasMacro, AllMacro, ExistsMacro, ExistsOneMacro, MapMacro, MapFilterMacro, FilterMacro,
	}

	// NoMacros provides an alias to an empty list of macros
	NoMacros = []Macro{}
)

Functions

func AlphaProtoAsValue

func AlphaProtoAsValue(adapter types.Adapter, v *exprpb.Value) (ref.Val, error)

AlphaProtoAsValue converts between google.api.expr.v1alpha1.Value and ref.Val.

func AstToCheckedExpr

func AstToCheckedExpr(a *Ast) (*exprpb.CheckedExpr, error)

AstToCheckedExpr converts an Ast to an protobuf CheckedExpr value.

If the Ast.IsChecked() returns false, this conversion method will return an error.

func AstToParsedExpr

func AstToParsedExpr(a *Ast) (*exprpb.ParsedExpr, error)

AstToParsedExpr converts an Ast to an protobuf ParsedExpr value.

func AstToString

func AstToString(a *Ast) (string, error)

AstToString converts an Ast back to a string if possible.

Note, the conversion may not be an exact replica of the original expression, but will produce a string that is semantically equivalent and whose textual representation is stable.

func ExprToString

func ExprToString(e ast.Expr, info *ast.SourceInfo) (string, error)

ExprToString converts an AST Expr node back to a string using macro call tracking metadata from source info if any macros are encountered within the expression.

func FormatCELType

func FormatCELType(t *Type) string

FormatCELType formats a cel.Type value to a string representation.

The type formatting is identical to FormatType.

func FormatType

func FormatType(t *exprpb.Type) string

FormatType converts a type message into a string representation.

Deprecated: prefer FormatCELType

func ProtoAsValue

func ProtoAsValue(adapter types.Adapter, v *celpb.Value) (ref.Val, error)

ProtoAsValue converts between cel.expr.Value and ref.Val.

func RefValueToValue

func RefValueToValue(res ref.Val) (*exprpb.Value, error)

RefValueToValue converts between ref.Val and google.api.expr.v1alpha1.Value. The result Value is the serialized proto form. The ref.Val must not be error or unknown.

func TypeToExprType

func TypeToExprType(t *Type) (*exprpb.Type, error)

TypeToExprType converts a CEL-native type representation to a protobuf CEL Type representation.

func ValueAsAlphaProto

func ValueAsAlphaProto(res ref.Val) (*exprpb.Value, error)

ValueAsAlphaProto converts between ref.Val and google.api.expr.v1alpha1.Value. The result Value is the serialized proto form. The ref.Val must not be error or unknown.

func ValueAsProto

func ValueAsProto(res ref.Val) (*celpb.Value, error)

ValueAsProto converts between ref.Val and cel.expr.Value. The result Value is the serialized proto form. The ref.Val must not be error or unknown.

func ValueToRefValue

func ValueToRefValue(adapter types.Adapter, v *exprpb.Value) (ref.Val, error)

ValueToRefValue converts between google.api.expr.v1alpha1.Value and ref.Val.

Types

type ASTOptimizer

type ASTOptimizer interface {
	// Optimize optimizes a type-checked AST within an Environment and accumulates any issues.
	Optimize(*OptimizerContext, *ast.AST) *ast.AST
}

ASTOptimizer applies an optimization over an AST and returns the optimized result.

func NewConstantFoldingOptimizer

func NewConstantFoldingOptimizer(opts ...ConstantFoldingOption) (ASTOptimizer, error)

NewConstantFoldingOptimizer creates an optimizer which inlines constant scalar an aggregate literal values within function calls and select statements with their evaluated result.

func NewInliningOptimizer

func NewInliningOptimizer(inlineVars ...*InlineVariable) ASTOptimizer

NewInliningOptimizer creates and optimizer which replaces variables with expression definitions.

If a variable occurs one time, the variable is replaced by the inline definition. If the variable occurs more than once, the variable occurences are replaced by a cel.bind() call.

type ASTValidator

type ASTValidator interface {
	// Name returns the name of the validator. Names must be unique.
	Name() string

	// Validate validates a given Ast within an Environment and collects a set of potential issues.
	//
	// The ValidatorConfig is generated from the set of ASTValidatorConfigurer instances prior to
	// the invocation of the Validate call. The expectation is that the validator configuration
	// is created in sequence and immutable once provided to the Validate call.
	//
	// See individual validators for more information on their configuration keys and configuration
	// properties.
	Validate(*Env, ValidatorConfig, *ast.AST, *Issues)
}

ASTValidator defines a singleton interface for validating a type-checked Ast against an environment.

Note: the Issues argument is mutable in the sense that it is intended to collect errors which will be reported to the caller.

func ValidateComprehensionNestingLimit

func ValidateComprehensionNestingLimit(limit int) ASTValidator

ValidateComprehensionNestingLimit ensures that comprehension nesting does not exceed the specified limit.

This validator can be useful for preventing arbitrarily nested comprehensions which can take high polynomial time to complete.

Note, this limit does not apply to comprehensions with an empty iteration range, as these comprehensions have no actual looping cost. The cel.bind() utilizes the comprehension structure to perform local variable assignments and supplies an empty iteration range, so they won't count against the nesting limit either.

func ValidateDurationLiterals

func ValidateDurationLiterals() ASTValidator

ValidateDurationLiterals ensures that duration literal arguments are valid immediately after type-check.

func ValidateHomogeneousAggregateLiterals

func ValidateHomogeneousAggregateLiterals() ASTValidator

ValidateHomogeneousAggregateLiterals checks that all list and map literals entries have the same types, i.e. no mixed list element types or mixed map key or map value types.

Note: the string format call relies on a mixed element type list for ease of use, so this check skips all literals which occur within string format calls.

func ValidateRegexLiterals

func ValidateRegexLiterals() ASTValidator

ValidateRegexLiterals ensures that regex patterns are validated after type-check.

func ValidateTimestampLiterals

func ValidateTimestampLiterals() ASTValidator

ValidateTimestampLiterals ensures that timestamp literal arguments are valid immediately after type-check.

type ASTValidatorConfigurer

type ASTValidatorConfigurer interface {
	Configure(MutableValidatorConfig) error
}

ASTValidatorConfigurer indicates that this object, currently expected to be an ASTValidator, participates in validator configuration settings.

This interface may be split from the expectation of being an ASTValidator instance in the future.

type ASTValidatorFactory

type ASTValidatorFactory func(*env.Validator) (ASTValidator, error)

ASTValidatorFactory creates an ASTValidator as configured by the input map

type Activation

type Activation = interpreter.Activation

Activation used to resolve identifiers by name and references by id.

An Activation is the primary mechanism by which a caller supplies input into a CEL program.

func ContextProtoVars

func ContextProtoVars(ctx proto.Message) (Activation, error)

ContextProtoVars uses the fields of the input proto.Messages as top-level variables within an Activation.

Consider using with `DeclareContextProto` to simplify variable type declarations and publishing when using protocol buffers.

func NewActivation

func NewActivation(bindings any) (Activation, error)

NewActivation returns an activation based on a map-based binding where the map keys are expected to be qualified names used with ResolveName calls.

The input `bindings` may either be of type `Activation` or `map[string]any`.

Lazy bindings may be supplied within the map-based input in either of the following forms: - func() any - func() ref.Val

The output of the lazy binding will overwrite the variable reference in the internal map.

Values which are not represented as ref.Val types on input may be adapted to a ref.Val using the types.Adapter configured in the environment.

func NoVars

func NoVars() Activation

NoVars returns an empty Activation.

type Ast

type Ast struct {
	// contains filtered or unexported fields
}

Ast representing the checked or unchecked expression, its source, and related metadata such as source position information.

func CheckedExprToAst

func CheckedExprToAst(checkedExpr *exprpb.CheckedExpr) *Ast

CheckedExprToAst converts a checked expression proto message to an Ast.

func CheckedExprToAstWithSource

func CheckedExprToAstWithSource(checkedExpr *exprpb.CheckedExpr, src Source) (*Ast, error)

CheckedExprToAstWithSource converts a checked expression proto message to an Ast, using the provided Source as the textual contents.

In general the source is not necessary unless the AST has been modified between the `Parse` and `Check` calls as an `Ast` created from the `Parse` step will carry the source through future calls.

Prefer CheckedExprToAst if loading expressions from storage.

func ParsedExprToAst

func ParsedExprToAst(parsedExpr *exprpb.ParsedExpr) *Ast

ParsedExprToAst converts a parsed expression proto message to an Ast.

func ParsedExprToAstWithSource

func ParsedExprToAstWithSource(parsedExpr *exprpb.ParsedExpr, src Source) *Ast

ParsedExprToAstWithSource converts a parsed expression proto message to an Ast, using the provided Source as the textual contents.

In general you only need this if you need to recheck a previously checked expression, or if you need to separately check a subset of an expression.

Prefer ParsedExprToAst if loading expressions from storage.

func (*Ast) Expr

func (ast *Ast) Expr() *exprpb.Expr

Expr returns the proto serializable instance of the parsed/checked expression.

Deprecated: prefer cel.AstToCheckedExpr() or cel.AstToParsedExpr() and call GetExpr() the result instead.

func (*Ast) IsChecked

func (ast *Ast) IsChecked() bool

IsChecked returns whether the Ast value has been successfully type-checked.

func (*Ast) NativeRep

func (ast *Ast) NativeRep() *celast.AST

NativeRep converts the AST to a Go-native representation.

func (*Ast) OutputType

func (ast *Ast) OutputType() *Type

OutputType returns the output type of the expression if the Ast has been type-checked, else returns cel.DynType as the parse step cannot infer types.

func (*Ast) ResultType

func (ast *Ast) ResultType() *exprpb.Type

ResultType returns the output type of the expression if the Ast has been type-checked, else returns chkdecls.Dyn as the parse step cannot infer the type.

Deprecated: use OutputType

func (*Ast) Source

func (ast *Ast) Source() Source

Source returns a view of the input used to create the Ast. This source may be complete or constructed from the SourceInfo.

func (*Ast) SourceInfo

func (ast *Ast) SourceInfo() *exprpb.SourceInfo

SourceInfo returns character offset and newline position information about expression elements.

type AttributePatternType

type AttributePatternType = interpreter.AttributePattern

AttributePatternType represents a top-level variable with an optional set of qualifier patterns.

See the interpreter.AttributePattern and interpreter.AttributeQualifierPattern for more info about how to create and manipulate AttributePattern values.

func AttributePattern

func AttributePattern(varName string) *AttributePatternType

AttributePattern returns an AttributePattern that matches a top-level variable. The pattern is mutable, and its methods support the specification of one or more qualifier patterns.

For example, the AttributePattern(`a`).QualString(`b`) represents a variable access `a` with a string field or index qualification `b`. This pattern will match Attributes `a`, and `a.b`, but not `a.c`.

When using a CEL expression within a container, e.g. a package or namespace, the variable name in the pattern must match the qualified name produced during the variable namespace resolution. For example, when variable `a` is declared within an expression whose container is `ns.app`, the fully qualified variable name may be `ns.app.a`, `ns.a`, or `a` per the CEL namespace resolution rules. Pick the fully qualified variable name that makes sense within the container as the AttributePattern `varName` argument.

type ConfigOptionFactory

type ConfigOptionFactory func(any) (EnvOption, bool)

ConfigOptionFactory declares a signature which accepts a configuration element, e.g. env.Extension and optionally produces an EnvOption in response.

If there are multiple ConfigOptionFactory values which could apply to the same configuration node the first one that returns an EnvOption and a `true` response will be used, and the config node will not be passed along to any other option factory.

Only the *env.Extension type is provided at this time, but validators, optimizers, and other tuning parameters may be supported in the future.

type ConfigurableASTValidator

type ConfigurableASTValidator interface {
	// ToConfig converts the internal configuration of an ASTValidator into an env.Validator instance
	// which minimally must include the validator name, but may also include a map[string]any config
	// object to be serialized to YAML. The string keys represent the configuration parameter name,
	// and the any value must mirror the internally supported type associated with the config key.
	//
	// Note: only primitive CEL types are supported by CEL validators at this time.
	ToConfig() *env.Validator
}

ConfigurableASTValidator supports conversion of an object to an `env.Validator` instance used for YAML serialization.

type ConstantFoldingOption

type ConstantFoldingOption func(opt *constantFoldingOptimizer) (*constantFoldingOptimizer, error)

ConstantFoldingOption defines a functional option for configuring constant folding.

func MaxConstantFoldIterations

func MaxConstantFoldIterations(limit int) ConstantFoldingOption

MaxConstantFoldIterations limits the number of times literals may be folding during optimization.

Defaults to 100 if not set.

type Env

type Env struct {
	Container *containers.Container
	// contains filtered or unexported fields
}

Env encapsulates the context necessary to perform parsing, type checking, or generation of evaluable programs for different expressions.

func NewCustomEnv

func NewCustomEnv(opts ...EnvOption) (*Env, error)

NewCustomEnv creates a custom program environment which is not automatically configured with the standard library of functions and macros documented in the CEL spec.

The purpose for using a custom environment might be for subsetting the standard library produced by the cel.StdLib() function. Subsetting CEL is a core aspect of its design that allows users to limit the compute and memory impact of a CEL program by controlling the functions and macros that may appear in a given expression.

See the EnvOption helper functions for the options that can be used to configure the environment.

func NewEnv

func NewEnv(opts ...EnvOption) (*Env, error)

NewEnv creates a program environment configured with the standard library of CEL functions and macros. The Env value returned can parse and check any CEL program which builds upon the core features documented in the CEL specification.

See the EnvOption helper functions for the options that can be used to configure the environment.

func (*Env) CELTypeAdapter

func (e *Env) CELTypeAdapter() types.Adapter

CELTypeAdapter returns the `types.Adapter` configured for the environment.

func (*Env) CELTypeProvider

func (e *Env) CELTypeProvider() types.Provider

CELTypeProvider returns the `types.Provider` configured for the environment.

func (*Env) Check

func (e *Env) Check(ast *Ast) (*Ast, *Issues)

Check performs type-checking on the input Ast and yields a checked Ast and/or set of Issues. If any `ASTValidators` are configured on the environment, they will be applied after a valid type-check result. If any issues are detected, the validators will provide them on the output Issues object.

Either checking or validation has failed if the returned Issues value and its Issues.Err() value are non-nil. Issues should be inspected if they are non-nil, but may not represent a fatal error.

It is possible to have both non-nil Ast and Issues values returned from this call: however, the mere presence of an Ast does not imply that it is valid for use.

func (*Env) Compile

func (e *Env) Compile(txt string) (*Ast, *Issues)

Compile combines the Parse and Check phases CEL program compilation to produce an Ast and associated issues.

If an error is encountered during parsing the Compile step will not continue with the Check phase. If non-error issues are encountered during Parse, they may be combined with any issues discovered during Check.

Note, for parse-only uses of CEL use Parse.

func (*Env) CompileSource

func (e *Env) CompileSource(src Source) (*Ast, *Issues)

CompileSource combines the Parse and Check phases CEL program compilation to produce an Ast and associated issues.

If an error is encountered during parsing the CompileSource step will not continue with the Check phase. If non-error issues are encountered during Parse, they may be combined with any issues discovered during Check.

Note, for parse-only uses of CEL use Parse.

func (*Env) EstimateCost

func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator, opts ...checker.CostOption) (checker.CostEstimate, error)

EstimateCost estimates the cost of a type checked CEL expression using the length estimates of input data and extension functions provided by estimator.

func (*Env) Extend

func (e *Env) Extend(opts ...EnvOption) (*Env, error)

Extend the current environment with additional options to produce a new Env.

Note, the extended Env value should not share memory with the original. It is possible, however, that a CustomTypeAdapter or CustomTypeProvider options could provide values which are mutable. To ensure separation of state between extended environments either make sure the TypeAdapter and TypeProvider are immutable, or that their underlying implementations are based on the ref.TypeRegistry which provides a Copy method which will be invoked by this method.

func (*Env) Functions

func (e *Env) Functions() map[string]*decls.FunctionDecl

Functions returns a shallow copy of the Functions, keyed by function name, that have been configured in the environment.

func (*Env) HasFeature

func (e *Env) HasFeature(flag int) bool

HasFeature checks whether the environment enables the given feature flag, as enumerated in options.go.

func (*Env) HasFunction

func (e *Env) HasFunction(functionName string) bool

HasFunction returns whether a specific function has been configured in the environment

func (*Env) HasLibrary

func (e *Env) HasLibrary(libName string) bool

HasLibrary returns whether a specific SingletonLibrary has been configured in the environment.

func (*Env) HasValidator

func (e *Env) HasValidator(name string) bool

HasValidator returns whether a specific ASTValidator has been configured in the environment.

func (*Env) Libraries

func (e *Env) Libraries() []string

Libraries returns a list of SingletonLibrary that have been configured in the environment.

func (*Env) Macros

func (e *Env) Macros() []Macro

Macros returns a shallow copy of macros associated with the environment.

func (*Env) Parse

func (e *Env) Parse(txt string) (*Ast, *Issues)

Parse parses the input expression value `txt` to a Ast and/or a set of Issues.

This form of Parse creates a Source value for the input `txt` and forwards to the ParseSource method.

func (*Env) ParseSource

func (e *Env) ParseSource(src Source) (*Ast, *Issues)

ParseSource parses the input source to an Ast and/or set of Issues.

Parsing has failed if the returned Issues value and its Issues.Err() value is non-nil. Issues should be inspected if they are non-nil, but may not represent a fatal error.

It is possible to have both non-nil Ast and Issues values returned from this call; however, the mere presence of an Ast does not imply that it is valid for use.

func (*Env) PartialVars

func (e *Env) PartialVars(vars any) (PartialActivation, error)

PartialVars returns a PartialActivation where all variables not in the input variable set, but which have been configured in the environment, are marked as unknown.

The `vars` value may either be an Activation or any valid input to the cel.NewActivation call.

Note, this is equivalent to calling cel.PartialVars and manually configuring the set of unknown variables. For more advanced use cases of partial state where portions of an object graph, rather than top-level variables, are missing the PartialVars() method may be a more suitable choice.

Note, the PartialVars will behave the same as cel.NoVars() unless the PartialAttributes option is provided as a ProgramOption.

func (*Env) PlanProgram

func (e *Env) PlanProgram(a *celast.AST, opts ...ProgramOption) (Program, error)

PlanProgram generates an evaluable instance of the AST in the go-native representation within the environment (Env).

func (*Env) Program

func (e *Env) Program(ast *Ast, opts ...ProgramOption) (Program, error)

Program generates an evaluable instance of the Ast within the environment (Env).

func (*Env) ResidualAst

func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error)

ResidualAst takes an Ast and its EvalDetails to produce a new Ast which only contains the attribute references which are unknown.

Residual expressions are beneficial in a few scenarios:

- Optimizing constant expression evaluations away. - Indexing and pruning expressions based on known input arguments. - Surfacing additional requirements that are needed in order to complete an evaluation. - Sharing the evaluation of an expression across multiple machines/nodes.

For example, if an expression targets a 'resource' and 'request' attribute and the possible values for the resource are known, a PartialActivation could mark the 'request' as an unknown interpreter.AttributePattern and the resulting ResidualAst would be reduced to only the parts of the expression that reference the 'request'.

Note, the expression ids within the residual AST generated through this method have no correlation to the expression ids of the original AST.

See the PartialVars helper for how to construct a PartialActivation.

TODO: Consider adding an option to generate a Program.Residual to avoid round-tripping to an Ast format and then Program again.

func (*Env) ToConfig

func (e *Env) ToConfig(name string) (*env.Config, error)

ToConfig produces a YAML-serializable env.Config object from the given environment.

The serialized configuration value is intended to represent a baseline set of config options which could be used as input to an EnvOption to configure the majority of the environment from a file.

Note: validators, features, flags, and safe-guard settings are not yet supported by the serialize method. Since optimizers are a separate construct from the environment and the standard expression components (parse, check, evalute), they are also not supported by the serialize method.

func (*Env) TypeAdapter

func (e *Env) TypeAdapter() ref.TypeAdapter

TypeAdapter returns the `ref.TypeAdapter` configured for the environment.

Deprecated: use CELTypeAdapter()

func (*Env) TypeProvider

func (e *Env) TypeProvider() ref.TypeProvider

TypeProvider returns the `ref.TypeProvider` configured for the environment.

Deprecated: use CELTypeProvider()

func (*Env) UnknownVars

func (e *Env) UnknownVars() PartialActivation

UnknownVars returns a PartialActivation which marks all variables declared in the Env as unknown AttributePattern values.

Note, the UnknownVars will behave the same as an cel.NoVars() unless the PartialAttributes option is provided as a ProgramOption.

func (*Env) Validators

func (e *Env) Validators() []ASTValidator

Validators returns the set of ASTValidators configured on the environment.

func (*Env) Variables

func (e *Env) Variables() []*decls.VariableDecl

Variables returns a shallow copy of the variables associated with the environment.

type EnvOption

type EnvOption func(e *Env) (*Env, error)

EnvOption is a functional interface for configuring the environment.

func ASTValidators

func ASTValidators(validators ...ASTValidator) EnvOption

ASTValidators configures a set of ASTValidator instances into the target environment.

Validators are applied in the order in which the are specified and are treated as singletons. The same ASTValidator with a given name will not be applied more than once.

func Abbrevs

func Abbrevs(qualifiedNames ...string) EnvOption

Abbrevs configures a set of simple names as abbreviations for fully-qualified names.

An abbreviation (abbrev for short) is a simple name that expands to a fully-qualified name. Abbreviations can be useful when working with variables, functions, and especially types from multiple namespaces:

// CEL object construction
qual.pkg.version.ObjTypeName{
   field: alt.container.ver.FieldTypeName{value: ...}
}

Only one the qualified names above may be used as the CEL container, so at least one of these references must be a long qualified name within an otherwise short CEL program. Using the following abbreviations, the program becomes much simpler:

// CEL Go option
Abbrevs("qual.pkg.version.ObjTypeName", "alt.container.ver.FieldTypeName")
// Simplified Object construction
ObjTypeName{field: FieldTypeName{value: ...}}

There are a few rules for the qualified names and the simple abbreviations generated from them: - Qualified names must be dot-delimited, e.g. `package.subpkg.name`. - The last element in the qualified name is the abbreviation. - Abbreviations must not collide with each other. - The abbreviation must not collide with unqualified names in use.

Abbreviations are distinct from container-based references in the following important ways: - Abbreviations must expand to a fully-qualified name. - Expanded abbreviations do not participate in namespace resolution. - Abbreviation expansion is done instead of the container search for a matching identifier. - Containers follow C++ namespace resolution rules with searches from the most qualified name

to the least qualified name.

- Container references within the CEL program may be relative, and are resolved to fully

qualified names at either type-check time or program plan time, whichever comes first.

If there is ever a case where an identifier could be in both the container and as an abbreviation, the abbreviation wins as this will ensure that the meaning of a program is preserved between compilations even as the container evolves.

func AlphaProtoAsDeclaration

func AlphaProtoAsDeclaration(d *exprpb.Decl) (EnvOption, error)

AlphaProtoAsDeclaration converts a v1alpha1.Decl value describing a variable or function into an EnvOption.

func ClearMacros

func ClearMacros() EnvOption

ClearMacros options clears all parser macros.

Clearing macros will ensure CEL expressions can only contain linear evaluation paths, as comprehensions such as `all` and `exists` are enabled only via macros.

func Constant

func Constant(name string, t *Type, v ref.Val) EnvOption

Constant creates an instances of an identifier declaration with a variable name, type, and value.

func Container

func Container(name string) EnvOption

Container sets the container for resolving variable names. Defaults to an empty container.

If all references within an expression are relative to a protocol buffer package, then specifying a container of `google.type` would make it possible to write expressions such as `Expr{expression: 'a < b'}` instead of having to write `google.type.Expr{...}`.

func CostEstimatorOptions

func CostEstimatorOptions(costOpts ...checker.CostOption) EnvOption

CostEstimatorOptions configure type-check time options for estimating expression cost.

func CrossTypeNumericComparisons

func CrossTypeNumericComparisons(enabled bool) EnvOption

CrossTypeNumericComparisons makes it possible to compare across numeric types, e.g. double < int

func CustomTypeAdapter

func CustomTypeAdapter(adapter types.Adapter) EnvOption

CustomTypeAdapter swaps the default types.Adapter implementation with a custom one.

Note: This option must be specified before the Types and TypeDescs options when used together.

func CustomTypeProvider

func CustomTypeProvider(provider any) EnvOption

CustomTypeProvider replaces the types.Provider implementation with a custom one.

The `provider` variable type may either be types.Provider or ref.TypeProvider (deprecated)

Note: This option must be specified before the Types and TypeDescs options when used together.

func Declarations

func Declarations(decls ...*exprpb.Decl) EnvOption

Declarations option extends the declaration set configured in the environment.

Note: Declarations will by default be appended to the pre-existing declaration set configured for the environment. The NewEnv call builds on top of the standard CEL declarations. For a purely custom set of declarations use NewCustomEnv.

Deprecated: use FunctionDecls and VariableDecls or FromConfig instead.

func DeclareContextProto

func DeclareContextProto(descriptor protoreflect.MessageDescriptor) EnvOption

DeclareContextProto returns an option to extend CEL environment with declarations from the given context proto. Each field of the proto defines a variable of the same name in the environment. https://github.com/google/cel-spec/blob/master/doc/langdef.md#evaluation-environment

func DefaultUTCTimeZone

func DefaultUTCTimeZone(enabled bool) EnvOption

DefaultUTCTimeZone ensures that time-based operations use the UTC timezone rather than the input time's local timezone.

func EagerlyValidateDeclarations

func EagerlyValidateDeclarations(enabled bool) EnvOption

EagerlyValidateDeclarations ensures that any collisions between configured declarations are caught at the time of the `NewEnv` call.

Eagerly validating declarations is also useful for bootstrapping a base `cel.Env` value. Calls to base `Env.Extend()` will be significantly faster when declarations are eagerly validated as declarations will be collision-checked at most once and only incrementally by way of `Extend`

Disabled by default as not all environments are used for type-checking.

func EnableErrorOnBadPresenceTest

func EnableErrorOnBadPresenceTest(value bool) EnvOption

EnableErrorOnBadPresenceTest enables error generation when a presence test or optional field selection is performed on a primitive type.

func EnableHiddenAccumulatorName

func EnableHiddenAccumulatorName(enabled bool) EnvOption

EnableHiddenAccumulatorName sets the parser to use the identifier '@result' for accumulators which is not normally accessible from CEL source.

func EnableIdentifierEscapeSyntax

func EnableIdentifierEscapeSyntax() EnvOption

EnableIdentifierEscapeSyntax enables identifier escaping (`) syntax for fields.

func EnableMacroCallTracking

func EnableMacroCallTracking() EnvOption

EnableMacroCallTracking ensures that call expressions which are replaced by macros are tracked in the `SourceInfo` of parsed and checked expressions.

func ExprDeclToDeclaration

func ExprDeclToDeclaration(d *exprpb.Decl) (EnvOption, error)

ExprDeclToDeclaration converts a protobuf CEL declaration to a CEL-native declaration, either a Variable or Function.

func ExtendedValidations

func ExtendedValidations() EnvOption

ExtendedValidations collects a set of common AST validations which reduce the likelihood of runtime errors.

- Validate duration and timestamp literals - Ensure regex strings are valid - Disable mixed type list and map literals

func FromConfig

func FromConfig(config *env.Config, optFactories ...ConfigOptionFactory) EnvOption

FromConfig produces and applies a set of EnvOption values derived from an env.Config object.

For configuration elements which refer to features outside of the `cel` package, an optional set of ConfigOptionFactory values may be passed in to support the conversion from static configuration to configured cel.Env value.

Note: disabling the standard library will clear the EnvOptions values previously set for the environment with the exception of propagating types and adapters over to the new environment.

Note: to support custom types referenced in the configuration file, you must ensure that one of the following options appears before the FromConfig option: Types, TypeDescs, or CustomTypeProvider as the type provider configured at the time when the config is processed is the one used to derive type references from the configuration.

func Function

func Function(name string, opts ...FunctionOpt) EnvOption

Function defines a function and overloads with optional singleton or per-overload bindings.

Using Function is roughly equivalent to calling Declarations() to declare the function signatures and Functions() to define the function bindings, if they have been defined. Specifying the same function name more than once will result in the aggregation of the function overloads. If any signatures conflict between the existing and new function definition an error will be raised. However, if the signatures are identical and the overload ids are the same, the redefinition will be considered a no-op.

One key difference with using Function() is that each FunctionDecl provided will handle dynamic dispatch based on the type-signatures of the overloads provided which means overload resolution at runtime is handled out of the box rather than via a custom binding for overload resolution via Functions():

- Overloads are searched in the order they are declared - Dynamic dispatch for lists and maps is limited by inspection of the list and map contents

at runtime. Empty lists and maps will result in a 'default dispatch'

- In the event that a default dispatch occurs, the first overload provided is the one invoked

If you intend to use overloads which differentiate based on the key or element type of a list or map, consider using a generic function instead: e.g. func(list(T)) or func(map(K, V)) as this will allow your implementation to determine how best to handle dispatch and the default behavior for empty lists and maps whose contents cannot be inspected.

For functions which use parameterized opaque types (abstract types), consider using a singleton function which is capable of inspecting the contents of the type and resolving the appropriate overload as CEL can only make inferences by type-name regarding such types.

func FunctionDecls

func FunctionDecls(funcs ...*decls.FunctionDecl) EnvOption

FunctionDecls provides one or more fully formed function declarations to be added to the environment.

func HomogeneousAggregateLiterals

func HomogeneousAggregateLiterals() EnvOption

HomogeneousAggregateLiterals disables mixed type list and map literal values.

Note, it is still possible to have heterogeneous aggregates when provided as variables to the expression, as well as via conversion of well-known dynamic types, or with unchecked expressions.

func Lib

func Lib(l Library) EnvOption

Lib creates an EnvOption out of a Library, allowing libraries to be provided as functional args, and to be linked to each other.

func Macros

func Macros(macros ...Macro) EnvOption

Macros option extends the macro set configured in the environment.

Note: This option must be specified after ClearMacros if used together.

func OptionalTypes

func OptionalTypes(opts ...OptionalTypesOption) EnvOption

OptionalTypes enable support for optional syntax and types in CEL.

The optional value type makes it possible to express whether variables have been provided, whether a result has been computed, and in the future whether an object field path, map key value, or list index has a value.

Syntax Changes

OptionalTypes are unlike other CEL extensions because they modify the CEL syntax itself, notably through the use of a `?` preceding a field name or index value.

## Field Selection

The optional syntax in field selection is denoted as `obj.?field`. In other words, if a field is set, return `optional.of(obj.field)“, else `optional.none()`. The optional field selection is viral in the sense that after the first optional selection all subsequent selections or indices are treated as optional, i.e. the following expressions are equivalent:

obj.?field.subfield
obj.?field.?subfield

## Indexing

Similar to field selection, the optional syntax can be used in index expressions on maps and lists:

list[?0]
map[?key]

## Optional Field Setting

When creating map or message literals, if a field may be optionally set based on its presence, then placing a `?` before the field name or key will ensure the type on the right-hand side must be optional(T) where T is the type of the field or key-value.

The following returns a map with the key expression set only if the subfield is present, otherwise an empty map is created:

{?key: obj.?field.subfield}

## Optional Element Setting

When creating list literals, an element in the list may be optionally added when the element expression is preceded by a `?`:

[a, ?b, ?c] // return a list with either [a], [a, b], [a, b, c], or [a, c]

Optional.Of

Create an optional(T) value of a given value with type T.

optional.of(10)

Optional.OfNonZeroValue

Create an optional(T) value of a given value with type T if it is not a zero-value. A zero-value the default empty value for any given CEL type, including empty protobuf message types. If the value is empty, the result of this call will be optional.none().

optional.ofNonZeroValue([1, 2, 3]) // optional(list(int))
optional.ofNonZeroValue([]) // optional.none()
optional.ofNonZeroValue(0)  // optional.none()
optional.ofNonZeroValue("") // optional.none()

Optional.None

Create an empty optional value.

HasValue

Determine whether the optional contains a value.

optional.of(b'hello').hasValue() // true
optional.ofNonZeroValue({}).hasValue() // false

Value

Get the value contained by the optional. If the optional does not have a value, the result will be a CEL error.

optional.of(b'hello').value() // b'hello'
optional.ofNonZeroValue({}).value() // error

Or

If the value on the left-hand side is optional.none(), the optional value on the right hand side is returned. If the value on the left-hand set is valued, then it is returned. This operation is short-circuiting and will only evaluate as many links in the `or` chain as are needed to return a non-empty optional value.

obj.?field.or(m[?key])
l[?index].or(obj.?field.subfield).or(obj.?other)

OrValue

Either return the value contained within the optional on the left-hand side or return the alternative value on the right hand side.

m[?key].orValue("none")

OptMap

Apply a transformation to the optional's underlying value if it is not empty and return an optional typed result based on the transformation. The transformation expression type must return a type T which is wrapped into an optional.

msg.?elements.optMap(e, e.size()).orValue(0)

OptFlatMap

Introduced in version: 1

Apply a transformation to the optional's underlying value if it is not empty and return the result. The transform expression must return an optional(T) rather than type T. This can be useful when dealing with zero values and conditionally generating an empty or non-empty result in ways which cannot be expressed with `optMap`.

msg.?elements.optFlatMap(e, e[?0]) // return the first element if present.

First

Introduced in version: 2

Returns an optional with the first value from the right hand list, or optional.None.

[1, 2, 3].first().value() == 1

Last

Introduced in version: 2

Returns an optional with the last value from the right hand list, or optional.None.

[1, 2, 3].last().value() == 3

This is syntactic sugar for msg.elements[msg.elements.size()-1].

Unwrap / UnwrapOpt

Introduced in version: 2

Returns a list of all the values that are not none in the input list of optional values. Can be used as optional.unwrap(List[T]) or with postfix notation: List[T].unwrapOpt()

optional.unwrap([optional.of(42), optional.none()]) == [42] [optional.of(42), optional.none()].unwrapOpt() == [42]

func ParserExpressionSizeLimit

func ParserExpressionSizeLimit(limit int) EnvOption

ParserExpressionSizeLimit adjusts the number of code points the expression parser is allowed to parse. Defaults defined in the parser package.

func ParserRecursionLimit

func ParserRecursionLimit(limit int) EnvOption

ParserRecursionLimit adjusts the AST depth the parser will tolerate. Defaults defined in the parser package.

func ProtoAsDeclaration

func ProtoAsDeclaration(d *celpb.Decl) (EnvOption, error)

ProtoAsDeclaration converts a canonical celpb.Decl value describing a variable or function into an EnvOption.

func StdLib

func StdLib(opts ...StdLibOption) EnvOption

StdLib returns an EnvOption for the standard library of CEL functions and macros.

func TypeDescs

func TypeDescs(descs ...any) EnvOption

TypeDescs adds type declarations from any protoreflect.FileDescriptor, protoregistry.Files, google.protobuf.FileDescriptorProto or google.protobuf.FileDescriptorSet provided.

Note that messages instantiated from these descriptors will be *dynamicpb.Message values rather than the concrete message type.

TypeDescs are hermetic to a single Env object, but may be copied to other Env values via extension or by re-using the same EnvOption with another NewEnv() call.

func Types

func Types(addTypes ...any) EnvOption

Types adds one or more type declarations to the environment, allowing for construction of type-literals whose definitions are included in the common expression built-in set.

The input types may either be instances of `proto.Message` or `ref.Type`. Any other type provided to this option will result in an error.

Well-known protobuf types within the `google.protobuf.*` package are included in the standard environment by default.

Note: This option must be specified after the CustomTypeProvider option when used together.

func Variable

func Variable(name string, t *Type) EnvOption

Variable creates an instance of a variable declaration with a variable name and type.

func VariableDecls

func VariableDecls(vars ...*decls.VariableDecl) EnvOption

VariableDecls configures a set of fully defined cel.VariableDecl instances in the environment.

func VariableWithDoc

func VariableWithDoc(name string, t *Type, doc string) EnvOption

VariableWithDoc creates an instance of a variable declaration with a variable name, type, and doc string.

type Error

type Error = common.Error

Error type which references an expression id, a location within source, and a message.

func ExistsMacroExpander

func ExistsMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

ExistsMacroExpander expands the input call arguments into a comprehension that returns true if any of the elements in the range match the predicate expressions: <iterRange>.exists(<iterVar>, <predicate>)

func ExistsOneMacroExpander

func ExistsOneMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

ExistsOneMacroExpander expands the input call arguments into a comprehension that returns true if exactly one of the elements in the range match the predicate expressions: <iterRange>.exists_one(<iterVar>, <predicate>)

func FilterMacroExpander

func FilterMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

FilterMacroExpander expands the input call arguments into a comprehension which produces a list which contains only elements which match the provided predicate expression: <iterRange>.filter(<iterVar>, <predicate>)

func HasMacroExpander

func HasMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

HasMacroExpander expands the input call arguments into a presence test, e.g. has(<operand>.field)

func MapMacroExpander

func MapMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

MapMacroExpander expands the input call arguments into a comprehension that transforms each element in the input to produce an output list.

There are two call patterns supported by map:

<iterRange>.map(<iterVar>, <transform>)
<iterRange>.map(<iterVar>, <predicate>, <transform>)

In the second form only iterVar values which return true when provided to the predicate expression are transformed.

type EvalDetails

type EvalDetails struct {
	// contains filtered or unexported fields
}

EvalDetails holds additional information observed during the Eval() call.

func (*EvalDetails) ActualCost

func (ed *EvalDetails) ActualCost() *uint64

ActualCost returns the tracked cost through the course of execution when `CostTracking` is enabled. Otherwise, returns nil if the cost was not enabled.

func (*EvalDetails) State

func (ed *EvalDetails) State() interpreter.EvalState

State of the evaluation, non-nil if the OptTrackState or OptExhaustiveEval is specified within EvalOptions.

type EvalOption

type EvalOption int

EvalOption indicates an evaluation option that may affect the evaluation behavior or information in the output result.

const (
	// OptTrackState will cause the runtime to return an immutable EvalState value in the Result.
	OptTrackState EvalOption = 1 << iota

	// OptExhaustiveEval causes the runtime to disable short-circuits and track state.
	OptExhaustiveEval EvalOption = 1<<iota | OptTrackState

	// OptOptimize precomputes functions and operators with constants as arguments at program
	// creation time. It also pre-compiles regex pattern constants passed to 'matches', reports any compilation errors
	// at program creation and uses the compiled regex pattern for all 'matches' function invocations.
	// This flag is useful when the expression will be evaluated repeatedly against
	// a series of different inputs.
	OptOptimize EvalOption = 1 << iota

	// OptPartialEval enables the evaluation of a partial state where the input data that may be
	// known to be missing, either as top-level variables, or somewhere within a variable's object
	// member graph.
	//
	// By itself, OptPartialEval does not change evaluation behavior unless the input to the
	// Program Eval() call is created via PartialVars().
	OptPartialEval EvalOption = 1 << iota

	// OptTrackCost enables the runtime cost calculation while validation and return cost within evalDetails
	// cost calculation is available via func ActualCost()
	OptTrackCost EvalOption = 1 << iota

	// OptCheckStringFormat enables compile-time checking of string.format calls for syntax/cardinality.
	//
	// Deprecated: use ext.StringsValidateFormatCalls() as this option is now a no-op.
	OptCheckStringFormat EvalOption = 1 << iota
)

type FunctionOpt

type FunctionOpt = decls.FunctionOpt

FunctionOpt defines a functional option for configuring a function declaration.

func DisableDeclaration

func DisableDeclaration(value bool) FunctionOpt

DisableDeclaration disables the function signatures, effectively removing them from the type-check environment while preserving the runtime bindings.

func FunctionDocs

func FunctionDocs(docs ...string) FunctionOpt

FunctionDocs provides a general usage documentation for the function.

Use OverloadExamples to provide example usage instructions for specific overloads.

func MemberOverload

func MemberOverload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt

MemberOverload defines a new receiver-style overload (or member function) with an overload id, argument types, and result type. Through the use of OverloadOpt options, the overload may also be configured with a binding, an operand trait, and to be non-strict.

Note: function bindings should be commonly configured with Overload instances whereas operand traits and strict-ness should be rare occurrences.

func Overload

func Overload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt

Overload defines a new global overload with an overload id, argument types, and result type. Through the use of OverloadOpt options, the overload may also be configured with a binding, an operand trait, and to be non-strict.

Note: function bindings should be commonly configured with Overload instances whereas operand traits and strict-ness should be rare occurrences.

func SingletonBinaryBinding

func SingletonBinaryBinding(fn functions.BinaryOp, traits ...int) FunctionOpt

SingletonBinaryBinding creates a singleton function definition to be used with all function overloads.

Note, this approach works well if operand is expected to have a specific trait which it implements, e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.

func SingletonBinaryImpl

func SingletonBinaryImpl(fn functions.BinaryOp, traits ...int) FunctionOpt

SingletonBinaryImpl creates a singleton function definition to be used with all function overloads.

Note, this approach works well if operand is expected to have a specific trait which it implements, e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.

Deprecated: use SingletonBinaryBinding

func SingletonFunctionBinding

func SingletonFunctionBinding(fn functions.FunctionOp, traits ...int) FunctionOpt

SingletonFunctionBinding creates a singleton function definition to be used with all function overloads.

Note, this approach works well if operand is expected to have a specific trait which it implements, e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.

func SingletonFunctionImpl

func SingletonFunctionImpl(fn functions.FunctionOp, traits ...int) FunctionOpt

SingletonFunctionImpl creates a singleton function definition to be used with all function overloads.

Note, this approach works well if operand is expected to have a specific trait which it implements, e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.

Deprecated: use SingletonFunctionBinding

func SingletonUnaryBinding

func SingletonUnaryBinding(fn functions.UnaryOp, traits ...int) FunctionOpt

SingletonUnaryBinding creates a singleton function definition to be used for all function overloads.

Note, this approach works well if operand is expected to have a specific trait which it implements, e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.

type InlineVariable

type InlineVariable struct {
	// contains filtered or unexported fields
}

InlineVariable holds a variable name to be matched and an AST representing the expression graph which should be used to replace it.

func NewInlineVariable

func NewInlineVariable(name string, definition *Ast) *InlineVariable

NewInlineVariable declares a variable name to be replaced by a checked expression.

func NewInlineVariableWithAlias

func NewInlineVariableWithAlias(name, alias string, definition *Ast) *InlineVariable

NewInlineVariableWithAlias declares a variable name to be replaced by a checked expression. If the variable occurs more than once, the provided alias will be used to replace the expressions where the variable name occurs.

func (*InlineVariable) Alias

func (v *InlineVariable) Alias() string

Alias returns the alias to use when performing cel.bind() calls during inlining.

func (*InlineVariable) Expr

func (v *InlineVariable) Expr() ast.Expr

Expr returns the inlined expression value.

func (*InlineVariable) Name

func (v *InlineVariable) Name() string

Name returns the qualified variable or field selection to replace.

func (*InlineVariable) Type

func (v *InlineVariable) Type() *Type

Type indicates the inlined expression type.

type Issues

type Issues struct {
	// contains filtered or unexported fields
}

Issues defines methods for inspecting the error details of parse and check calls.

Note: in the future, non-fatal warnings and notices may be inspectable via the Issues struct.

func NewIssues

func NewIssues(errs *common.Errors) *Issues

NewIssues returns an Issues struct from a common.Errors object.

func NewIssuesWithSourceInfo

func NewIssuesWithSourceInfo(errs *common.Errors, info *celast.SourceInfo) *Issues

NewIssuesWithSourceInfo returns an Issues struct from a common.Errors object with SourceInfo metatata which can be used with the `ReportErrorAtID` method for additional error reports within the context information that's inferred from an expression id.

func (*Issues) Append

func (i *Issues) Append(other *Issues) *Issues

Append collects the issues from another Issues struct into a new Issues object.

func (*Issues) Err

func (i *Issues) Err() error

Err returns an error value if the issues list contains one or more errors.

func (*Issues) Errors

func (i *Issues) Errors() []*Error

Errors returns the collection of errors encountered in more granular detail.

func (*Issues) ReportErrorAtID

func (i *Issues) ReportErrorAtID(id int64, message string, args ...any)

ReportErrorAtID reports an error message with an optional set of formatting arguments.

The source metadata for the expression at `id`, if present, is attached to the error report. To ensure that source metadata is attached to error reports, use NewIssuesWithSourceInfo.

func (*Issues) String

func (i *Issues) String() string

String converts the issues to a suitable display string.

type Kind

type Kind = types.Kind

Kind indicates a CEL type's kind which is used to differentiate quickly between simple and complex types.

type Library

type Library interface {
	// CompileOptions returns a collection of functional options for configuring the Parse / Check
	// environment.
	CompileOptions() []EnvOption

	// ProgramOptions returns a collection of functional options which should be included in every
	// Program generated from the Env.Program() call.
	ProgramOptions() []ProgramOption
}

Library provides a collection of EnvOption and ProgramOption values used to configure a CEL environment for a particular use case or with a related set of functionality.

Note, the ProgramOption values provided by a library are expected to be static and not vary between calls to Env.Program(). If there is a need for such dynamic configuration, prefer to configure these options outside the Library and within the Env.Program() call directly.

type LibraryAliaser

type LibraryAliaser interface {
	LibraryAlias() string
}

LibraryAliaser generates a simple named alias for the library, for use during environment serialization.

type LibrarySubsetter

type LibrarySubsetter interface {
	LibrarySubset() *env.LibrarySubset
}

LibrarySubsetter provides the subset description associated with the library, nil if not subset.

type LibraryVersioner

type LibraryVersioner interface {
	LibraryVersion() uint32
}

LibraryVersioner provides a version number for the library.

If not implemented, the library version will be flagged as 'latest' during environment serialization.

type Macro

type Macro = parser.Macro

Macro describes a function signature to match and the MacroExpander to apply.

Note: when a Macro should apply to multiple overloads (based on arg count) of a given function, a Macro should be created per arg-count or as a var arg macro.

func GlobalMacro

func GlobalMacro(function string, argCount int, factory MacroFactory, opts ...MacroOpt) Macro

GlobalMacro creates a Macro for a global function with the specified arg count.

func GlobalVarArgMacro

func GlobalVarArgMacro(function string, factory MacroFactory, opts ...MacroOpt) Macro

GlobalVarArgMacro creates a Macro for a global function with a variable arg count.

func NewGlobalMacro

func NewGlobalMacro(function string, argCount int, expander MacroExpander) Macro

NewGlobalMacro creates a Macro for a global function with the specified arg count.

Deprecated: use GlobalMacro

func NewGlobalVarArgMacro

func NewGlobalVarArgMacro(function string, expander MacroExpander) Macro

NewGlobalVarArgMacro creates a Macro for a global function with a variable arg count.

Deprecated: use GlobalVarArgMacro

func NewReceiverMacro

func NewReceiverMacro(function string, argCount int, expander MacroExpander) Macro

NewReceiverMacro creates a Macro for a receiver function matching the specified arg count.

Deprecated: use ReceiverMacro

func NewReceiverVarArgMacro

func NewReceiverVarArgMacro(function string, expander MacroExpander) Macro

NewReceiverVarArgMacro creates a Macro for a receiver function matching a variable arg count.

Deprecated: use ReceiverVarArgMacro

func ReceiverMacro

func ReceiverMacro(function string, argCount int, factory MacroFactory, opts ...MacroOpt) Macro

ReceiverMacro creates a Macro for a receiver function matching the specified arg count.

func ReceiverVarArgMacro

func ReceiverVarArgMacro(function string, factory MacroFactory, opts ...MacroOpt) Macro

ReceiverVarArgMacro creates a Macro for a receiver function matching a variable arg count.

type MacroExpander

type MacroExpander func(eh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *Error)

MacroExpander converts a call and its associated arguments into a protobuf Expr representation.

If the MacroExpander determines within the implementation that an expansion is not needed it may return a nil Expr value to indicate a non-match. However, if an expansion is to be performed, but the arguments are not well-formed, the result of the expansion will be an error.

The MacroExpander accepts as arguments a MacroExprHelper as well as the arguments used in the function call and produces as output an Expr ast node.

Note: when the Macro.IsReceiverStyle() method returns true, the target argument will be nil.

type MacroExprFactory

type MacroExprFactory = parser.ExprHelper

MacroExprFactory assists with the creation of Expr values in a manner which is consistent the internal semantics and id generation behaviors of the parser and checker libraries.

type MacroExprHelper

type MacroExprHelper interface {
	// Copy the input expression with a brand new set of identifiers.
	Copy(*exprpb.Expr) *exprpb.Expr

	// LiteralBool creates an Expr value for a bool literal.
	LiteralBool(value bool) *exprpb.Expr

	// LiteralBytes creates an Expr value for a byte literal.
	LiteralBytes(value []byte) *exprpb.Expr

	// LiteralDouble creates an Expr value for double literal.
	LiteralDouble(value float64) *exprpb.Expr

	// LiteralInt creates an Expr value for an int literal.
	LiteralInt(value int64) *exprpb.Expr

	// LiteralString creates am Expr value for a string literal.
	LiteralString(value string) *exprpb.Expr

	// LiteralUint creates an Expr value for a uint literal.
	LiteralUint(value uint64) *exprpb.Expr

	// NewList creates a CreateList instruction where the list is comprised of the optional set
	// of elements provided as arguments.
	NewList(elems ...*exprpb.Expr) *exprpb.Expr

	// NewMap creates a CreateStruct instruction for a map where the map is comprised of the
	// optional set of key, value entries.
	NewMap(entries ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr

	// NewMapEntry creates a Map Entry for the key, value pair.
	NewMapEntry(key *exprpb.Expr, val *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry

	// NewObject creates a CreateStruct instruction for an object with a given type name and
	// optional set of field initializers.
	NewObject(typeName string, fieldInits ...*exprpb.Expr_CreateStruct_Entry) *exprpb.Expr

	// NewObjectFieldInit creates a new Object field initializer from the field name and value.
	NewObjectFieldInit(field string, init *exprpb.Expr, optional bool) *exprpb.Expr_CreateStruct_Entry

	// Fold creates a fold comprehension instruction.
	//
	// - iterVar is the iteration variable name.
	// - iterRange represents the expression that resolves to a list or map where the elements or
	//   keys (respectively) will be iterated over.
	// - accuVar is the accumulation variable name, typically parser.AccumulatorName.
	// - accuInit is the initial expression whose value will be set for the accuVar prior to
	//   folding.
	// - condition is the expression to test to determine whether to continue folding.
	// - step is the expression to evaluation at the conclusion of a single fold iteration.
	// - result is the computation to evaluate at the conclusion of the fold.
	//
	// The accuVar should not shadow variable names that you would like to reference within the
	// environment in the step and condition expressions. Presently, the name __result__ is commonly
	// used by built-in macros but this may change in the future.
	Fold(iterVar string,
		iterRange *exprpb.Expr,
		accuVar string,
		accuInit *exprpb.Expr,
		condition *exprpb.Expr,
		step *exprpb.Expr,
		result *exprpb.Expr) *exprpb.Expr

	// Ident creates an identifier Expr value.
	Ident(name string) *exprpb.Expr

	// AccuIdent returns an accumulator identifier for use with comprehension results.
	AccuIdent() *exprpb.Expr

	// GlobalCall creates a function call Expr value for a global (free) function.
	GlobalCall(function string, args ...*exprpb.Expr) *exprpb.Expr

	// ReceiverCall creates a function call Expr value for a receiver-style function.
	ReceiverCall(function string, target *exprpb.Expr, args ...*exprpb.Expr) *exprpb.Expr

	// PresenceTest creates a Select TestOnly Expr value for modelling has() semantics.
	PresenceTest(operand *exprpb.Expr, field string) *exprpb.Expr

	// Select create a field traversal Expr value.
	Select(operand *exprpb.Expr, field string) *exprpb.Expr

	// OffsetLocation returns the Location of the expression identifier.
	OffsetLocation(exprID int64) common.Location

	// NewError associates an error message with a given expression id.
	NewError(exprID int64, message string) *Error
}

MacroExprHelper exposes helper methods for creating new expressions within a CEL abstract syntax tree. ExprHelper assists with the manipulation of proto-based Expr values in a manner which is consistent with the source position and expression id generation code leveraged by both the parser and type-checker.

type MacroFactory

type MacroFactory = parser.MacroExpander

MacroFactory defines an expansion function which converts a call and its arguments to a cel.Expr value.

type MacroOpt

type MacroOpt = parser.MacroOpt

MacroOpt defines a functional option for configuring macro behavior.

func MacroDocs

func MacroDocs(docs ...string) MacroOpt

MacroDocs configures a list of strings into a multiline description for the macro.

func MacroExamples

func MacroExamples(examples ...string) MacroOpt

MacroExamples configures a list of examples, either as a string or common.MultilineString, into an example set to be provided with the macro Documentation() call.

type MutableValidatorConfig

type MutableValidatorConfig interface {
	ValidatorConfig
	Set(name string, value any) error
}

MutableValidatorConfig provides mutation methods for querying and updating validator configuration settings.

type OptimizerContext

type OptimizerContext struct {
	*Env

	*Issues
	// contains filtered or unexported fields
}

OptimizerContext embeds Env and Issues instances to make it easy to type-check and evaluate subexpressions and report any errors encountered along the way. The context also embeds the optimizerExprFactory which can be used to generate new sub-expressions with expression ids consistent with the expectations of a parsed expression.

func (OptimizerContext) ClearMacroCall

func (opt OptimizerContext) ClearMacroCall(id int64)

ClearMacroCall clears the macro at the given expression id.

func (OptimizerContext) CopyAST

func (opt OptimizerContext) CopyAST(a *ast.AST) (ast.Expr, *ast.SourceInfo)

CopyAST creates a renumbered copy of `Expr` and `SourceInfo` values of the input AST, where the renumbering uses the same scheme as the core optimizer logic ensuring there are no collisions between copies.

Use this method before attempting to merge the expression from AST into another.

func (OptimizerContext) CopyASTAndMetadata

func (opt OptimizerContext) CopyASTAndMetadata(a *ast.AST) ast.Expr

CopyASTAndMetadata copies the input AST and propagates the macro metadata into the AST being optimized.

func (*OptimizerContext) ExtendEnv

func (opt *OptimizerContext) ExtendEnv(opts ...EnvOption) error

ExtendEnv auguments the context's environment with the additional options.

func (OptimizerContext) MacroCalls

func (opt OptimizerContext) MacroCalls() map[int64]ast.Expr

MacroCalls returns the map of macro calls currently in the context.

func (OptimizerContext) NewAST

func (opt OptimizerContext) NewAST(expr ast.Expr) *ast.AST

NewAST creates an AST from the current expression using the tracked source info which is modified and managed by the OptimizerContext.

func (OptimizerContext) NewBindMacro

func (opt OptimizerContext) NewBindMacro(macroID int64, varName string, varInit, remaining ast.Expr) (astExpr, macroExpr ast.Expr)

NewBindMacro creates an AST expression representing the expanded bind() macro, and a macro expression representing the unexpanded call signature to be inserted into the source info macro call metadata.

func (OptimizerContext) NewCall

func (opt OptimizerContext) NewCall(function string, args ...ast.Expr) ast.Expr

NewCall creates a global function call invocation expression.

Example:

countByField(list, fieldName) - function: countByField - args: [list, fieldName]

func (OptimizerContext) NewHasMacro

func (opt OptimizerContext) NewHasMacro(macroID int64, s ast.Expr) (astExpr, macroExpr ast.Expr)

NewHasMacro generates a test-only select expression to be included within an AST and an unexpanded has() macro call signature to be inserted into the source info macro call metadata.

func (OptimizerContext) NewIdent

func (opt OptimizerContext) NewIdent(name string) ast.Expr

NewIdent creates a new identifier expression.

Examples:

- simple_var_name - qualified.subpackage.var_name

func (OptimizerContext) NewList

func (opt OptimizerContext) NewList(elems []ast.Expr, optIndices []int32) ast.Expr

NewList creates a list expression with a set of optional indices.

Examples:

[a, b] - elems: [a, b] - optIndices: []

[a, ?b, ?c] - elems: [a, b, c] - optIndices: [1, 2]

func (OptimizerContext) NewLiteral

func (opt OptimizerContext) NewLiteral(value ref.Val) ast.Expr

NewLiteral creates a new literal expression value.

The range of valid values for a literal generated during optimization is different than for expressions generated via parsing / type-checking, as the ref.Val may be _any_ CEL value so long as the value can be converted back to a literal-like form.

func (OptimizerContext) NewMap

func (opt OptimizerContext) NewMap(entries []ast.EntryExpr) ast.Expr

NewMap creates a map from a set of entry expressions which contain a key and value expression.

func (OptimizerContext) NewMapEntry

func (opt OptimizerContext) NewMapEntry(key, value ast.Expr, isOptional bool) ast.EntryExpr

NewMapEntry creates a map entry with a key and value expression and a flag to indicate whether the entry is optional.

Examples:

{a: b} - key: a - value: b - optional: false

{?a: ?b} - key: a - value: b - optional: true

func (OptimizerContext) NewMemberCall

func (opt OptimizerContext) NewMemberCall(function string, target ast.Expr, args ...ast.Expr) ast.Expr

NewMemberCall creates a member function call invocation expression where 'target' is the receiver of the call.

Example:

list.countByField(fieldName) - function: countByField - target: list - args: [fieldName]

func (OptimizerContext) NewSelect

func (opt OptimizerContext) NewSelect(operand ast.Expr, field string) ast.Expr

NewSelect creates a select expression where a field value is selected from an operand.

Example:

msg.field_name - operand: msg - field: field_name

func (OptimizerContext) NewStruct

func (opt OptimizerContext) NewStruct(typeName string, fields []ast.EntryExpr) ast.Expr

NewStruct creates a new typed struct value with an set of field initializations.

Example:

pkg.TypeName{field: value} - typeName: pkg.TypeName - fields: [{field: value}]

func (OptimizerContext) NewStructField

func (opt OptimizerContext) NewStructField(field string, value ast.Expr, isOptional bool) ast.EntryExpr

NewStructField creates a struct field initialization.

Examples:

{count: 3u} - field: count - value: 3u - optional: false

{?count: x} - field: count - value: x - optional: true

func (OptimizerContext) SetMacroCall

func (opt OptimizerContext) SetMacroCall(id int64, expr ast.Expr)

SetMacroCall sets the macro call metadata for the given macro id within the tracked source info metadata.

func (OptimizerContext) UpdateExpr

func (opt OptimizerContext) UpdateExpr(target, updated ast.Expr)

UpdateExpr updates the target expression with the updated content while preserving macro metadata.

There are four scenarios during the update to consider: 1. target is not macro, updated is not macro 2. target is macro, updated is not macro 3. target is macro, updated is macro 4. target is not macro, updated is macro

When the target is a macro already, it may either be updated to a new macro function body if the update is also a macro, or it may be removed altogether if the update is a macro.

When the update is a macro, then the target references within other macros must be updated to point to the new updated macro. Otherwise, other macros which pointed to the target body must be replaced with copies of the updated expression body.

type OptionalTypesOption

type OptionalTypesOption func(*optionalLib) *optionalLib

OptionalTypesOption is a functional interface for configuring the strings library.

func OptionalTypesVersion

func OptionalTypesVersion(version uint32) OptionalTypesOption

OptionalTypesVersion configures the version of the optional type library.

The version limits which functions are available. Only functions introduced below or equal to the given version included in the library. If this option is not set, all functions are available.

See the library documentation to determine which version a function was introduced. If the documentation does not state which version a function was introduced, it can be assumed to be introduced at version 0, when the library was first created.

type OverloadOpt

type OverloadOpt = decls.OverloadOpt

OverloadOpt is a functional option for configuring a function overload.

func BinaryBinding

func BinaryBinding(binding functions.BinaryOp) OverloadOpt

BinaryBinding provides the implementation of a binary overload. The provided function is protected by a runtime type-guard which ensures runtime type agreement between the overload signature and runtime argument types.

func FunctionBinding

func FunctionBinding(binding functions.FunctionOp) OverloadOpt

FunctionBinding provides the implementation of a variadic overload. The provided function is protected by a runtime type-guard which ensures runtime type agreement between the overload signature and runtime argument types.

func LateFunctionBinding

func LateFunctionBinding() OverloadOpt

LateFunctionBinding indicates that the function has a binding which is not known at compile time. This is useful for functions which have side-effects or are not deterministically computable.

func OverloadExamples

func OverloadExamples(docs ...string) OverloadOpt

OverloadExamples configures an example of how to invoke the overload.

func OverloadIsNonStrict

func OverloadIsNonStrict() OverloadOpt

OverloadIsNonStrict enables the function to be called with error and unknown argument values.

Note: do not use this option unless absoluately necessary as it should be an uncommon feature.

func OverloadOperandTrait

func OverloadOperandTrait(trait int) OverloadOpt

OverloadOperandTrait configures a set of traits which the first argument to the overload must implement in order to be successfully invoked.

func UnaryBinding

func UnaryBinding(binding functions.UnaryOp) OverloadOpt

UnaryBinding provides the implementation of a unary overload. The provided function is protected by a runtime type-guard which ensures runtime type agreement between the overload signature and runtime argument types.

type OverloadSelector

type OverloadSelector = decls.OverloadSelector

OverloadSelector selects an overload associated with a given function when it returns true.

Used in combination with the FunctionDecl.Subset method.

func ExcludeOverloads

func ExcludeOverloads(overloadIDs ...string) OverloadSelector

ExcludeOverloads defines an OverloadSelector which deny-lists a set of overloads by their ids.

func IncludeOverloads

func IncludeOverloads(overloadIDs ...string) OverloadSelector

IncludeOverloads defines an OverloadSelector which allow-lists a set of overloads by their ids.

type PartialActivation

type PartialActivation = interpreter.PartialActivation

PartialActivation extends the Activation interface with a set of unknown AttributePatterns.

func PartialVars

func PartialVars(vars any,
	unknowns ...*AttributePatternType) (PartialActivation, error)

PartialVars returns a PartialActivation which contains variables and a set of AttributePattern values that indicate variables or parts of variables whose value are not yet known.

This method relies on manually configured sets of missing attribute patterns. For a method which infers the missing variables from the input and the configured environment, use Env.PartialVars().

The `vars` value may either be an Activation or any valid input to the NewActivation call.

type Program

type Program interface {
	// Eval returns the result of an evaluation of the Ast and environment against the input vars.
	//
	// The vars value may either be an `Activation` or a `map[string]any`.
	//
	// If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will
	// be non-nil. Given this caveat on `details`, the return state from evaluation will be:
	//
	// *  `val`, `details`, `nil` - Successful evaluation of a non-error result.
	// *  `val`, `details`, `err` - Successful evaluation to an error result.
	// *  `nil`, `details`, `err` - Unsuccessful evaluation.
	//
	// An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption`
	// or `ProgramOption` values used in the creation of the evaluation environment or executable
	// program.
	Eval(any) (ref.Val, *EvalDetails, error)

	// ContextEval evaluates the program with a set of input variables and a context object in order
	// to support cancellation and timeouts. This method must be used in conjunction with the
	// InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation.
	//
	// The vars value may either be an `Activation` or `map[string]any`.
	//
	// The output contract for `ContextEval` is otherwise identical to the `Eval` method.
	ContextEval(context.Context, any) (ref.Val, *EvalDetails, error)
}

Program is an evaluable view of an Ast.

type ProgramOption

type ProgramOption func(p *prog) (*prog, error)

ProgramOption is a functional interface for configuring evaluation bindings and behaviors.

func CostLimit

func CostLimit(costLimit uint64) ProgramOption

CostLimit enables cost tracking and sets configures program evaluation to exit early with a "runtime cost limit exceeded" error if the runtime cost exceeds the costLimit. The CostLimit is a metric that corresponds to the number and estimated expense of operations performed while evaluating an expression. It is indicative of CPU usage, not memory usage.

func CostTrackerOptions

func CostTrackerOptions(costOpts ...interpreter.CostTrackerOption) ProgramOption

CostTrackerOptions configures a set of options for cost-tracking.

Note, CostTrackerOptions is a no-op unless CostTracking is also enabled.

func CostTracking

func CostTracking(costEstimator interpreter.ActualCostEstimator) ProgramOption

CostTracking enables cost tracking and registers a ActualCostEstimator that can optionally provide a runtime cost estimate for any function calls.

func CustomDecorator

CustomDecorator appends an InterpreterDecorator to the program.

InterpretableDecorators can be used to inspect, alter, or replace the Program plan.

func EvalOptions

func EvalOptions(opts ...EvalOption) ProgramOption

EvalOptions sets one or more evaluation options which may affect the evaluation or Result.

func Functions

func Functions(funcs ...*functions.Overload) ProgramOption

Functions adds function overloads that extend or override the set of CEL built-ins.

Deprecated: use Function() instead to declare the function, its overload signatures, and the overload implementations.

func Globals

func Globals(vars any) ProgramOption

Globals sets the global variable values for a given program. These values may be shadowed by variables with the same name provided to the Eval() call. If Globals is used in a Library with a Lib EnvOption, vars may shadow variables provided by previously added libraries.

The vars value may either be an `cel.Activation` instance or a `map[string]any`.

func InterruptCheckFrequency

func InterruptCheckFrequency(checkFrequency uint) ProgramOption

InterruptCheckFrequency configures the number of iterations within a comprehension to evaluate before checking whether the function evaluation has been interrupted.

func OptimizeRegex

func OptimizeRegex(regexOptimizations ...*interpreter.RegexOptimization) ProgramOption

OptimizeRegex provides a way to replace the InterpretableCall for regex functions. This can be used to compile regex string constants at program creation time and report any errors and then use the compiled regex for all regex function invocations.

type Prompt

type Prompt struct {
	// Persona indicates something about the kind of user making the request
	Persona string

	// FormatRules indicate how the LLM should generate its output
	FormatRules string

	// GeneralUsage specifies additional context on how CEL should be used.
	GeneralUsage string
	// contains filtered or unexported fields
}

Prompt represents the core components of an LLM prompt based on a CEL environment.

All fields of the prompt may be overwritten / modified with support for rendering the prompt to a human-readable string.

func AuthoringPrompt

func AuthoringPrompt(env *Env) (*Prompt, error)

AuthoringPrompt creates a prompt template from a CEL environment for the purpose of AI-assisted authoring.

func (*Prompt) Render

func (p *Prompt) Render(userPrompt string) string

Render renders the user prompt with the associated context from the prompt template for use with LLM generators.

type SingletonLibrary

type SingletonLibrary interface {
	Library

	// LibraryName provides a namespaced name which is used to check whether the library has already
	// been configured in the environment.
	LibraryName() string
}

SingletonLibrary refines the Library interface to ensure that libraries in this format are only configured once within the environment.

type Source

type Source = common.Source

Source interface representing a user-provided expression.

type StaticOptimizer

type StaticOptimizer struct {
	// contains filtered or unexported fields
}

StaticOptimizer contains a sequence of ASTOptimizer instances which will be applied in order.

The static optimizer normalizes expression ids and type-checking run between optimization passes to ensure that the final optimized output is a valid expression with metadata consistent with what would have been generated from a parsed and checked expression.

Note: source position information is best-effort and likely wrong, but optimized expressions should be suitable for calls to parser.Unparse.

func NewStaticOptimizer

func NewStaticOptimizer(optimizers ...ASTOptimizer) *StaticOptimizer

NewStaticOptimizer creates a StaticOptimizer with a sequence of ASTOptimizer's to be applied to a checked expression.

func (*StaticOptimizer) Optimize

func (opt *StaticOptimizer) Optimize(env *Env, a *Ast) (*Ast, *Issues)

Optimize applies a sequence of optimizations to an Ast within a given environment.

If issues are encountered, the Issues.Err() return value will be non-nil.

type StdLibOption

type StdLibOption func(*stdLibrary) *stdLibrary

StdLibOption specifies a functional option for configuring the standard CEL library.

func StdLibSubset

func StdLibSubset(subset *env.LibrarySubset) StdLibOption

StdLibSubset configures the standard library to use a subset of its functions and macros.

Since the StdLib is a singleton library, only the first instance of the StdLib() environment options will be configured on the environment which means only the StdLibSubset() initially configured with the library will be used.

type Type

type Type = types.Type

Type holds a reference to a runtime type with an optional type-checked set of type parameters.

func ExprTypeToType

func ExprTypeToType(t *exprpb.Type) (*Type, error)

ExprTypeToType converts a protobuf CEL type representation to a CEL-native type representation.

type ValidatorConfig

type ValidatorConfig interface {
	GetOrDefault(name string, value any) any
}

ValidatorConfig provides an accessor method for querying validator configuration state.

Source Files

cel.go decls.go env.go folding.go inlining.go io.go library.go macro.go optimizer.go options.go program.go prompt.go validator.go

Version
v0.25.0 (latest)
Published
Apr 22, 2025
Platform
linux/amd64
Imports
37 packages
Last checked
7 hours ago

Tools for package owners.