package sagemaker
import "github.com/aws/aws-sdk-go-v2/service/sagemaker"
Index ¶
- Constants
- func AddResolveEndpointMiddleware(stack *middleware.Stack, options ResolveEndpointMiddlewareOptions)
- func NewDefaultEndpointResolver() *internalendpoints.Resolver
- func RemoveResolveEndpointMiddleware(stack *middleware.Stack) error
- type AddTagsInput
- type AddTagsOutput
- type AssociateTrialComponentInput
- type AssociateTrialComponentOutput
- type Client
- func New(options Options, optFns ...func(*Options)) *Client
- func NewFromConfig(cfg aws.Config, optFns ...func(*Options)) *Client
- func (c *Client) AddTags(ctx context.Context, params *AddTagsInput, optFns ...func(*Options)) (*AddTagsOutput, error)
- func (c *Client) AssociateTrialComponent(ctx context.Context, params *AssociateTrialComponentInput, optFns ...func(*Options)) (*AssociateTrialComponentOutput, error)
- func (c *Client) CreateAlgorithm(ctx context.Context, params *CreateAlgorithmInput, optFns ...func(*Options)) (*CreateAlgorithmOutput, error)
- func (c *Client) CreateApp(ctx context.Context, params *CreateAppInput, optFns ...func(*Options)) (*CreateAppOutput, error)
- func (c *Client) CreateAutoMLJob(ctx context.Context, params *CreateAutoMLJobInput, optFns ...func(*Options)) (*CreateAutoMLJobOutput, error)
- func (c *Client) CreateCodeRepository(ctx context.Context, params *CreateCodeRepositoryInput, optFns ...func(*Options)) (*CreateCodeRepositoryOutput, error)
- func (c *Client) CreateCompilationJob(ctx context.Context, params *CreateCompilationJobInput, optFns ...func(*Options)) (*CreateCompilationJobOutput, error)
- func (c *Client) CreateDomain(ctx context.Context, params *CreateDomainInput, optFns ...func(*Options)) (*CreateDomainOutput, error)
- func (c *Client) CreateEndpoint(ctx context.Context, params *CreateEndpointInput, optFns ...func(*Options)) (*CreateEndpointOutput, error)
- func (c *Client) CreateEndpointConfig(ctx context.Context, params *CreateEndpointConfigInput, optFns ...func(*Options)) (*CreateEndpointConfigOutput, error)
- func (c *Client) CreateExperiment(ctx context.Context, params *CreateExperimentInput, optFns ...func(*Options)) (*CreateExperimentOutput, error)
- func (c *Client) CreateFlowDefinition(ctx context.Context, params *CreateFlowDefinitionInput, optFns ...func(*Options)) (*CreateFlowDefinitionOutput, error)
- func (c *Client) CreateHumanTaskUi(ctx context.Context, params *CreateHumanTaskUiInput, optFns ...func(*Options)) (*CreateHumanTaskUiOutput, error)
- func (c *Client) CreateHyperParameterTuningJob(ctx context.Context, params *CreateHyperParameterTuningJobInput, optFns ...func(*Options)) (*CreateHyperParameterTuningJobOutput, error)
- func (c *Client) CreateLabelingJob(ctx context.Context, params *CreateLabelingJobInput, optFns ...func(*Options)) (*CreateLabelingJobOutput, error)
- func (c *Client) CreateModel(ctx context.Context, params *CreateModelInput, optFns ...func(*Options)) (*CreateModelOutput, error)
- func (c *Client) CreateModelPackage(ctx context.Context, params *CreateModelPackageInput, optFns ...func(*Options)) (*CreateModelPackageOutput, error)
- func (c *Client) CreateMonitoringSchedule(ctx context.Context, params *CreateMonitoringScheduleInput, optFns ...func(*Options)) (*CreateMonitoringScheduleOutput, error)
- func (c *Client) CreateNotebookInstance(ctx context.Context, params *CreateNotebookInstanceInput, optFns ...func(*Options)) (*CreateNotebookInstanceOutput, error)
- func (c *Client) CreateNotebookInstanceLifecycleConfig(ctx context.Context, params *CreateNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*CreateNotebookInstanceLifecycleConfigOutput, error)
- func (c *Client) CreatePresignedDomainUrl(ctx context.Context, params *CreatePresignedDomainUrlInput, optFns ...func(*Options)) (*CreatePresignedDomainUrlOutput, error)
- func (c *Client) CreatePresignedNotebookInstanceUrl(ctx context.Context, params *CreatePresignedNotebookInstanceUrlInput, optFns ...func(*Options)) (*CreatePresignedNotebookInstanceUrlOutput, error)
- func (c *Client) CreateProcessingJob(ctx context.Context, params *CreateProcessingJobInput, optFns ...func(*Options)) (*CreateProcessingJobOutput, error)
- func (c *Client) CreateTrainingJob(ctx context.Context, params *CreateTrainingJobInput, optFns ...func(*Options)) (*CreateTrainingJobOutput, error)
- func (c *Client) CreateTransformJob(ctx context.Context, params *CreateTransformJobInput, optFns ...func(*Options)) (*CreateTransformJobOutput, error)
- func (c *Client) CreateTrial(ctx context.Context, params *CreateTrialInput, optFns ...func(*Options)) (*CreateTrialOutput, error)
- func (c *Client) CreateTrialComponent(ctx context.Context, params *CreateTrialComponentInput, optFns ...func(*Options)) (*CreateTrialComponentOutput, error)
- func (c *Client) CreateUserProfile(ctx context.Context, params *CreateUserProfileInput, optFns ...func(*Options)) (*CreateUserProfileOutput, error)
- func (c *Client) CreateWorkforce(ctx context.Context, params *CreateWorkforceInput, optFns ...func(*Options)) (*CreateWorkforceOutput, error)
- func (c *Client) CreateWorkteam(ctx context.Context, params *CreateWorkteamInput, optFns ...func(*Options)) (*CreateWorkteamOutput, error)
- func (c *Client) DeleteAlgorithm(ctx context.Context, params *DeleteAlgorithmInput, optFns ...func(*Options)) (*DeleteAlgorithmOutput, error)
- func (c *Client) DeleteApp(ctx context.Context, params *DeleteAppInput, optFns ...func(*Options)) (*DeleteAppOutput, error)
- func (c *Client) DeleteCodeRepository(ctx context.Context, params *DeleteCodeRepositoryInput, optFns ...func(*Options)) (*DeleteCodeRepositoryOutput, error)
- func (c *Client) DeleteDomain(ctx context.Context, params *DeleteDomainInput, optFns ...func(*Options)) (*DeleteDomainOutput, error)
- func (c *Client) DeleteEndpoint(ctx context.Context, params *DeleteEndpointInput, optFns ...func(*Options)) (*DeleteEndpointOutput, error)
- func (c *Client) DeleteEndpointConfig(ctx context.Context, params *DeleteEndpointConfigInput, optFns ...func(*Options)) (*DeleteEndpointConfigOutput, error)
- func (c *Client) DeleteExperiment(ctx context.Context, params *DeleteExperimentInput, optFns ...func(*Options)) (*DeleteExperimentOutput, error)
- func (c *Client) DeleteFlowDefinition(ctx context.Context, params *DeleteFlowDefinitionInput, optFns ...func(*Options)) (*DeleteFlowDefinitionOutput, error)
- func (c *Client) DeleteHumanTaskUi(ctx context.Context, params *DeleteHumanTaskUiInput, optFns ...func(*Options)) (*DeleteHumanTaskUiOutput, error)
- func (c *Client) DeleteModel(ctx context.Context, params *DeleteModelInput, optFns ...func(*Options)) (*DeleteModelOutput, error)
- func (c *Client) DeleteModelPackage(ctx context.Context, params *DeleteModelPackageInput, optFns ...func(*Options)) (*DeleteModelPackageOutput, error)
- func (c *Client) DeleteMonitoringSchedule(ctx context.Context, params *DeleteMonitoringScheduleInput, optFns ...func(*Options)) (*DeleteMonitoringScheduleOutput, error)
- func (c *Client) DeleteNotebookInstance(ctx context.Context, params *DeleteNotebookInstanceInput, optFns ...func(*Options)) (*DeleteNotebookInstanceOutput, error)
- func (c *Client) DeleteNotebookInstanceLifecycleConfig(ctx context.Context, params *DeleteNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*DeleteNotebookInstanceLifecycleConfigOutput, error)
- func (c *Client) DeleteTags(ctx context.Context, params *DeleteTagsInput, optFns ...func(*Options)) (*DeleteTagsOutput, error)
- func (c *Client) DeleteTrial(ctx context.Context, params *DeleteTrialInput, optFns ...func(*Options)) (*DeleteTrialOutput, error)
- func (c *Client) DeleteTrialComponent(ctx context.Context, params *DeleteTrialComponentInput, optFns ...func(*Options)) (*DeleteTrialComponentOutput, error)
- func (c *Client) DeleteUserProfile(ctx context.Context, params *DeleteUserProfileInput, optFns ...func(*Options)) (*DeleteUserProfileOutput, error)
- func (c *Client) DeleteWorkforce(ctx context.Context, params *DeleteWorkforceInput, optFns ...func(*Options)) (*DeleteWorkforceOutput, error)
- func (c *Client) DeleteWorkteam(ctx context.Context, params *DeleteWorkteamInput, optFns ...func(*Options)) (*DeleteWorkteamOutput, error)
- func (c *Client) DescribeAlgorithm(ctx context.Context, params *DescribeAlgorithmInput, optFns ...func(*Options)) (*DescribeAlgorithmOutput, error)
- func (c *Client) DescribeApp(ctx context.Context, params *DescribeAppInput, optFns ...func(*Options)) (*DescribeAppOutput, error)
- func (c *Client) DescribeAutoMLJob(ctx context.Context, params *DescribeAutoMLJobInput, optFns ...func(*Options)) (*DescribeAutoMLJobOutput, error)
- func (c *Client) DescribeCodeRepository(ctx context.Context, params *DescribeCodeRepositoryInput, optFns ...func(*Options)) (*DescribeCodeRepositoryOutput, error)
- func (c *Client) DescribeCompilationJob(ctx context.Context, params *DescribeCompilationJobInput, optFns ...func(*Options)) (*DescribeCompilationJobOutput, error)
- func (c *Client) DescribeDomain(ctx context.Context, params *DescribeDomainInput, optFns ...func(*Options)) (*DescribeDomainOutput, error)
- func (c *Client) DescribeEndpoint(ctx context.Context, params *DescribeEndpointInput, optFns ...func(*Options)) (*DescribeEndpointOutput, error)
- func (c *Client) DescribeEndpointConfig(ctx context.Context, params *DescribeEndpointConfigInput, optFns ...func(*Options)) (*DescribeEndpointConfigOutput, error)
- func (c *Client) DescribeExperiment(ctx context.Context, params *DescribeExperimentInput, optFns ...func(*Options)) (*DescribeExperimentOutput, error)
- func (c *Client) DescribeFlowDefinition(ctx context.Context, params *DescribeFlowDefinitionInput, optFns ...func(*Options)) (*DescribeFlowDefinitionOutput, error)
- func (c *Client) DescribeHumanTaskUi(ctx context.Context, params *DescribeHumanTaskUiInput, optFns ...func(*Options)) (*DescribeHumanTaskUiOutput, error)
- func (c *Client) DescribeHyperParameterTuningJob(ctx context.Context, params *DescribeHyperParameterTuningJobInput, optFns ...func(*Options)) (*DescribeHyperParameterTuningJobOutput, error)
- func (c *Client) DescribeLabelingJob(ctx context.Context, params *DescribeLabelingJobInput, optFns ...func(*Options)) (*DescribeLabelingJobOutput, error)
- func (c *Client) DescribeModel(ctx context.Context, params *DescribeModelInput, optFns ...func(*Options)) (*DescribeModelOutput, error)
- func (c *Client) DescribeModelPackage(ctx context.Context, params *DescribeModelPackageInput, optFns ...func(*Options)) (*DescribeModelPackageOutput, error)
- func (c *Client) DescribeMonitoringSchedule(ctx context.Context, params *DescribeMonitoringScheduleInput, optFns ...func(*Options)) (*DescribeMonitoringScheduleOutput, error)
- func (c *Client) DescribeNotebookInstance(ctx context.Context, params *DescribeNotebookInstanceInput, optFns ...func(*Options)) (*DescribeNotebookInstanceOutput, error)
- func (c *Client) DescribeNotebookInstanceLifecycleConfig(ctx context.Context, params *DescribeNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*DescribeNotebookInstanceLifecycleConfigOutput, error)
- func (c *Client) DescribeProcessingJob(ctx context.Context, params *DescribeProcessingJobInput, optFns ...func(*Options)) (*DescribeProcessingJobOutput, error)
- func (c *Client) DescribeSubscribedWorkteam(ctx context.Context, params *DescribeSubscribedWorkteamInput, optFns ...func(*Options)) (*DescribeSubscribedWorkteamOutput, error)
- func (c *Client) DescribeTrainingJob(ctx context.Context, params *DescribeTrainingJobInput, optFns ...func(*Options)) (*DescribeTrainingJobOutput, error)
- func (c *Client) DescribeTransformJob(ctx context.Context, params *DescribeTransformJobInput, optFns ...func(*Options)) (*DescribeTransformJobOutput, error)
- func (c *Client) DescribeTrial(ctx context.Context, params *DescribeTrialInput, optFns ...func(*Options)) (*DescribeTrialOutput, error)
- func (c *Client) DescribeTrialComponent(ctx context.Context, params *DescribeTrialComponentInput, optFns ...func(*Options)) (*DescribeTrialComponentOutput, error)
- func (c *Client) DescribeUserProfile(ctx context.Context, params *DescribeUserProfileInput, optFns ...func(*Options)) (*DescribeUserProfileOutput, error)
- func (c *Client) DescribeWorkforce(ctx context.Context, params *DescribeWorkforceInput, optFns ...func(*Options)) (*DescribeWorkforceOutput, error)
- func (c *Client) DescribeWorkteam(ctx context.Context, params *DescribeWorkteamInput, optFns ...func(*Options)) (*DescribeWorkteamOutput, error)
- func (c *Client) DisassociateTrialComponent(ctx context.Context, params *DisassociateTrialComponentInput, optFns ...func(*Options)) (*DisassociateTrialComponentOutput, error)
- func (c *Client) GetSearchSuggestions(ctx context.Context, params *GetSearchSuggestionsInput, optFns ...func(*Options)) (*GetSearchSuggestionsOutput, error)
- func (c *Client) ListAlgorithms(ctx context.Context, params *ListAlgorithmsInput, optFns ...func(*Options)) (*ListAlgorithmsOutput, error)
- func (c *Client) ListApps(ctx context.Context, params *ListAppsInput, optFns ...func(*Options)) (*ListAppsOutput, error)
- func (c *Client) ListAutoMLJobs(ctx context.Context, params *ListAutoMLJobsInput, optFns ...func(*Options)) (*ListAutoMLJobsOutput, error)
- func (c *Client) ListCandidatesForAutoMLJob(ctx context.Context, params *ListCandidatesForAutoMLJobInput, optFns ...func(*Options)) (*ListCandidatesForAutoMLJobOutput, error)
- func (c *Client) ListCodeRepositories(ctx context.Context, params *ListCodeRepositoriesInput, optFns ...func(*Options)) (*ListCodeRepositoriesOutput, error)
- func (c *Client) ListCompilationJobs(ctx context.Context, params *ListCompilationJobsInput, optFns ...func(*Options)) (*ListCompilationJobsOutput, error)
- func (c *Client) ListDomains(ctx context.Context, params *ListDomainsInput, optFns ...func(*Options)) (*ListDomainsOutput, error)
- func (c *Client) ListEndpointConfigs(ctx context.Context, params *ListEndpointConfigsInput, optFns ...func(*Options)) (*ListEndpointConfigsOutput, error)
- func (c *Client) ListEndpoints(ctx context.Context, params *ListEndpointsInput, optFns ...func(*Options)) (*ListEndpointsOutput, error)
- func (c *Client) ListExperiments(ctx context.Context, params *ListExperimentsInput, optFns ...func(*Options)) (*ListExperimentsOutput, error)
- func (c *Client) ListFlowDefinitions(ctx context.Context, params *ListFlowDefinitionsInput, optFns ...func(*Options)) (*ListFlowDefinitionsOutput, error)
- func (c *Client) ListHumanTaskUis(ctx context.Context, params *ListHumanTaskUisInput, optFns ...func(*Options)) (*ListHumanTaskUisOutput, error)
- func (c *Client) ListHyperParameterTuningJobs(ctx context.Context, params *ListHyperParameterTuningJobsInput, optFns ...func(*Options)) (*ListHyperParameterTuningJobsOutput, error)
- func (c *Client) ListLabelingJobs(ctx context.Context, params *ListLabelingJobsInput, optFns ...func(*Options)) (*ListLabelingJobsOutput, error)
- func (c *Client) ListLabelingJobsForWorkteam(ctx context.Context, params *ListLabelingJobsForWorkteamInput, optFns ...func(*Options)) (*ListLabelingJobsForWorkteamOutput, error)
- func (c *Client) ListModelPackages(ctx context.Context, params *ListModelPackagesInput, optFns ...func(*Options)) (*ListModelPackagesOutput, error)
- func (c *Client) ListModels(ctx context.Context, params *ListModelsInput, optFns ...func(*Options)) (*ListModelsOutput, error)
- func (c *Client) ListMonitoringExecutions(ctx context.Context, params *ListMonitoringExecutionsInput, optFns ...func(*Options)) (*ListMonitoringExecutionsOutput, error)
- func (c *Client) ListMonitoringSchedules(ctx context.Context, params *ListMonitoringSchedulesInput, optFns ...func(*Options)) (*ListMonitoringSchedulesOutput, error)
- func (c *Client) ListNotebookInstanceLifecycleConfigs(ctx context.Context, params *ListNotebookInstanceLifecycleConfigsInput, optFns ...func(*Options)) (*ListNotebookInstanceLifecycleConfigsOutput, error)
- func (c *Client) ListNotebookInstances(ctx context.Context, params *ListNotebookInstancesInput, optFns ...func(*Options)) (*ListNotebookInstancesOutput, error)
- func (c *Client) ListProcessingJobs(ctx context.Context, params *ListProcessingJobsInput, optFns ...func(*Options)) (*ListProcessingJobsOutput, error)
- func (c *Client) ListSubscribedWorkteams(ctx context.Context, params *ListSubscribedWorkteamsInput, optFns ...func(*Options)) (*ListSubscribedWorkteamsOutput, error)
- func (c *Client) ListTags(ctx context.Context, params *ListTagsInput, optFns ...func(*Options)) (*ListTagsOutput, error)
- func (c *Client) ListTrainingJobs(ctx context.Context, params *ListTrainingJobsInput, optFns ...func(*Options)) (*ListTrainingJobsOutput, error)
- func (c *Client) ListTrainingJobsForHyperParameterTuningJob(ctx context.Context, params *ListTrainingJobsForHyperParameterTuningJobInput, optFns ...func(*Options)) (*ListTrainingJobsForHyperParameterTuningJobOutput, error)
- func (c *Client) ListTransformJobs(ctx context.Context, params *ListTransformJobsInput, optFns ...func(*Options)) (*ListTransformJobsOutput, error)
- func (c *Client) ListTrialComponents(ctx context.Context, params *ListTrialComponentsInput, optFns ...func(*Options)) (*ListTrialComponentsOutput, error)
- func (c *Client) ListTrials(ctx context.Context, params *ListTrialsInput, optFns ...func(*Options)) (*ListTrialsOutput, error)
- func (c *Client) ListUserProfiles(ctx context.Context, params *ListUserProfilesInput, optFns ...func(*Options)) (*ListUserProfilesOutput, error)
- func (c *Client) ListWorkforces(ctx context.Context, params *ListWorkforcesInput, optFns ...func(*Options)) (*ListWorkforcesOutput, error)
- func (c *Client) ListWorkteams(ctx context.Context, params *ListWorkteamsInput, optFns ...func(*Options)) (*ListWorkteamsOutput, error)
- func (c *Client) RenderUiTemplate(ctx context.Context, params *RenderUiTemplateInput, optFns ...func(*Options)) (*RenderUiTemplateOutput, error)
- func (c *Client) Search(ctx context.Context, params *SearchInput, optFns ...func(*Options)) (*SearchOutput, error)
- func (c *Client) StartMonitoringSchedule(ctx context.Context, params *StartMonitoringScheduleInput, optFns ...func(*Options)) (*StartMonitoringScheduleOutput, error)
- func (c *Client) StartNotebookInstance(ctx context.Context, params *StartNotebookInstanceInput, optFns ...func(*Options)) (*StartNotebookInstanceOutput, error)
- func (c *Client) StopAutoMLJob(ctx context.Context, params *StopAutoMLJobInput, optFns ...func(*Options)) (*StopAutoMLJobOutput, error)
- func (c *Client) StopCompilationJob(ctx context.Context, params *StopCompilationJobInput, optFns ...func(*Options)) (*StopCompilationJobOutput, error)
- func (c *Client) StopHyperParameterTuningJob(ctx context.Context, params *StopHyperParameterTuningJobInput, optFns ...func(*Options)) (*StopHyperParameterTuningJobOutput, error)
- func (c *Client) StopLabelingJob(ctx context.Context, params *StopLabelingJobInput, optFns ...func(*Options)) (*StopLabelingJobOutput, error)
- func (c *Client) StopMonitoringSchedule(ctx context.Context, params *StopMonitoringScheduleInput, optFns ...func(*Options)) (*StopMonitoringScheduleOutput, error)
- func (c *Client) StopNotebookInstance(ctx context.Context, params *StopNotebookInstanceInput, optFns ...func(*Options)) (*StopNotebookInstanceOutput, error)
- func (c *Client) StopProcessingJob(ctx context.Context, params *StopProcessingJobInput, optFns ...func(*Options)) (*StopProcessingJobOutput, error)
- func (c *Client) StopTrainingJob(ctx context.Context, params *StopTrainingJobInput, optFns ...func(*Options)) (*StopTrainingJobOutput, error)
- func (c *Client) StopTransformJob(ctx context.Context, params *StopTransformJobInput, optFns ...func(*Options)) (*StopTransformJobOutput, error)
- func (c *Client) UpdateCodeRepository(ctx context.Context, params *UpdateCodeRepositoryInput, optFns ...func(*Options)) (*UpdateCodeRepositoryOutput, error)
- func (c *Client) UpdateDomain(ctx context.Context, params *UpdateDomainInput, optFns ...func(*Options)) (*UpdateDomainOutput, error)
- func (c *Client) UpdateEndpoint(ctx context.Context, params *UpdateEndpointInput, optFns ...func(*Options)) (*UpdateEndpointOutput, error)
- func (c *Client) UpdateEndpointWeightsAndCapacities(ctx context.Context, params *UpdateEndpointWeightsAndCapacitiesInput, optFns ...func(*Options)) (*UpdateEndpointWeightsAndCapacitiesOutput, error)
- func (c *Client) UpdateExperiment(ctx context.Context, params *UpdateExperimentInput, optFns ...func(*Options)) (*UpdateExperimentOutput, error)
- func (c *Client) UpdateMonitoringSchedule(ctx context.Context, params *UpdateMonitoringScheduleInput, optFns ...func(*Options)) (*UpdateMonitoringScheduleOutput, error)
- func (c *Client) UpdateNotebookInstance(ctx context.Context, params *UpdateNotebookInstanceInput, optFns ...func(*Options)) (*UpdateNotebookInstanceOutput, error)
- func (c *Client) UpdateNotebookInstanceLifecycleConfig(ctx context.Context, params *UpdateNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*UpdateNotebookInstanceLifecycleConfigOutput, error)
- func (c *Client) UpdateTrial(ctx context.Context, params *UpdateTrialInput, optFns ...func(*Options)) (*UpdateTrialOutput, error)
- func (c *Client) UpdateTrialComponent(ctx context.Context, params *UpdateTrialComponentInput, optFns ...func(*Options)) (*UpdateTrialComponentOutput, error)
- func (c *Client) UpdateUserProfile(ctx context.Context, params *UpdateUserProfileInput, optFns ...func(*Options)) (*UpdateUserProfileOutput, error)
- func (c *Client) UpdateWorkforce(ctx context.Context, params *UpdateWorkforceInput, optFns ...func(*Options)) (*UpdateWorkforceOutput, error)
- func (c *Client) UpdateWorkteam(ctx context.Context, params *UpdateWorkteamInput, optFns ...func(*Options)) (*UpdateWorkteamOutput, error)
- type CreateAlgorithmInput
- type CreateAlgorithmOutput
- type CreateAppInput
- type CreateAppOutput
- type CreateAutoMLJobInput
- type CreateAutoMLJobOutput
- type CreateCodeRepositoryInput
- type CreateCodeRepositoryOutput
- type CreateCompilationJobInput
- type CreateCompilationJobOutput
- type CreateDomainInput
- type CreateDomainOutput
- type CreateEndpointConfigInput
- type CreateEndpointConfigOutput
- type CreateEndpointInput
- type CreateEndpointOutput
- type CreateExperimentInput
- type CreateExperimentOutput
- type CreateFlowDefinitionInput
- type CreateFlowDefinitionOutput
- type CreateHumanTaskUiInput
- type CreateHumanTaskUiOutput
- type CreateHyperParameterTuningJobInput
- type CreateHyperParameterTuningJobOutput
- type CreateLabelingJobInput
- type CreateLabelingJobOutput
- type CreateModelInput
- type CreateModelOutput
- type CreateModelPackageInput
- type CreateModelPackageOutput
- type CreateMonitoringScheduleInput
- type CreateMonitoringScheduleOutput
- type CreateNotebookInstanceInput
- type CreateNotebookInstanceLifecycleConfigInput
- type CreateNotebookInstanceLifecycleConfigOutput
- type CreateNotebookInstanceOutput
- type CreatePresignedDomainUrlInput
- type CreatePresignedDomainUrlOutput
- type CreatePresignedNotebookInstanceUrlInput
- type CreatePresignedNotebookInstanceUrlOutput
- type CreateProcessingJobInput
- type CreateProcessingJobOutput
- type CreateTrainingJobInput
- type CreateTrainingJobOutput
- type CreateTransformJobInput
- type CreateTransformJobOutput
- type CreateTrialComponentInput
- type CreateTrialComponentOutput
- type CreateTrialInput
- type CreateTrialOutput
- type CreateUserProfileInput
- type CreateUserProfileOutput
- type CreateWorkforceInput
- type CreateWorkforceOutput
- type CreateWorkteamInput
- type CreateWorkteamOutput
- type DeleteAlgorithmInput
- type DeleteAlgorithmOutput
- type DeleteAppInput
- type DeleteAppOutput
- type DeleteCodeRepositoryInput
- type DeleteCodeRepositoryOutput
- type DeleteDomainInput
- type DeleteDomainOutput
- type DeleteEndpointConfigInput
- type DeleteEndpointConfigOutput
- type DeleteEndpointInput
- type DeleteEndpointOutput
- type DeleteExperimentInput
- type DeleteExperimentOutput
- type DeleteFlowDefinitionInput
- type DeleteFlowDefinitionOutput
- type DeleteHumanTaskUiInput
- type DeleteHumanTaskUiOutput
- type DeleteModelInput
- type DeleteModelOutput
- type DeleteModelPackageInput
- type DeleteModelPackageOutput
- type DeleteMonitoringScheduleInput
- type DeleteMonitoringScheduleOutput
- type DeleteNotebookInstanceInput
- type DeleteNotebookInstanceLifecycleConfigInput
- type DeleteNotebookInstanceLifecycleConfigOutput
- type DeleteNotebookInstanceOutput
- type DeleteTagsInput
- type DeleteTagsOutput
- type DeleteTrialComponentInput
- type DeleteTrialComponentOutput
- type DeleteTrialInput
- type DeleteTrialOutput
- type DeleteUserProfileInput
- type DeleteUserProfileOutput
- type DeleteWorkforceInput
- type DeleteWorkforceOutput
- type DeleteWorkteamInput
- type DeleteWorkteamOutput
- type DescribeAlgorithmInput
- type DescribeAlgorithmOutput
- type DescribeAppInput
- type DescribeAppOutput
- type DescribeAutoMLJobInput
- type DescribeAutoMLJobOutput
- type DescribeCodeRepositoryInput
- type DescribeCodeRepositoryOutput
- type DescribeCompilationJobInput
- type DescribeCompilationJobOutput
- type DescribeDomainInput
- type DescribeDomainOutput
- type DescribeEndpointConfigInput
- type DescribeEndpointConfigOutput
- type DescribeEndpointInput
- type DescribeEndpointOutput
- type DescribeExperimentInput
- type DescribeExperimentOutput
- type DescribeFlowDefinitionInput
- type DescribeFlowDefinitionOutput
- type DescribeHumanTaskUiInput
- type DescribeHumanTaskUiOutput
- type DescribeHyperParameterTuningJobInput
- type DescribeHyperParameterTuningJobOutput
- type DescribeLabelingJobInput
- type DescribeLabelingJobOutput
- type DescribeModelInput
- type DescribeModelOutput
- type DescribeModelPackageInput
- type DescribeModelPackageOutput
- type DescribeMonitoringScheduleInput
- type DescribeMonitoringScheduleOutput
- type DescribeNotebookInstanceInput
- type DescribeNotebookInstanceLifecycleConfigInput
- type DescribeNotebookInstanceLifecycleConfigOutput
- type DescribeNotebookInstanceOutput
- type DescribeProcessingJobInput
- type DescribeProcessingJobOutput
- type DescribeSubscribedWorkteamInput
- type DescribeSubscribedWorkteamOutput
- type DescribeTrainingJobInput
- type DescribeTrainingJobOutput
- type DescribeTransformJobInput
- type DescribeTransformJobOutput
- type DescribeTrialComponentInput
- type DescribeTrialComponentOutput
- type DescribeTrialInput
- type DescribeTrialOutput
- type DescribeUserProfileInput
- type DescribeUserProfileOutput
- type DescribeWorkforceInput
- type DescribeWorkforceOutput
- type DescribeWorkteamInput
- type DescribeWorkteamOutput
- type DisassociateTrialComponentInput
- type DisassociateTrialComponentOutput
- type EndpointResolver
- type EndpointResolverFunc
- type GetSearchSuggestionsInput
- type GetSearchSuggestionsOutput
- type HTTPClient
- type HTTPSignerV4
- type ListAlgorithmsInput
- type ListAlgorithmsOutput
- type ListAppsInput
- type ListAppsOutput
- type ListAutoMLJobsInput
- type ListAutoMLJobsOutput
- type ListCandidatesForAutoMLJobInput
- type ListCandidatesForAutoMLJobOutput
- type ListCodeRepositoriesInput
- type ListCodeRepositoriesOutput
- type ListCompilationJobsInput
- type ListCompilationJobsOutput
- type ListDomainsInput
- type ListDomainsOutput
- type ListEndpointConfigsInput
- type ListEndpointConfigsOutput
- type ListEndpointsInput
- type ListEndpointsOutput
- type ListExperimentsInput
- type ListExperimentsOutput
- type ListFlowDefinitionsInput
- type ListFlowDefinitionsOutput
- type ListHumanTaskUisInput
- type ListHumanTaskUisOutput
- type ListHyperParameterTuningJobsInput
- type ListHyperParameterTuningJobsOutput
- type ListLabelingJobsForWorkteamInput
- type ListLabelingJobsForWorkteamOutput
- type ListLabelingJobsInput
- type ListLabelingJobsOutput
- type ListModelPackagesInput
- type ListModelPackagesOutput
- type ListModelsInput
- type ListModelsOutput
- type ListMonitoringExecutionsInput
- type ListMonitoringExecutionsOutput
- type ListMonitoringSchedulesInput
- type ListMonitoringSchedulesOutput
- type ListNotebookInstanceLifecycleConfigsInput
- type ListNotebookInstanceLifecycleConfigsOutput
- type ListNotebookInstancesInput
- type ListNotebookInstancesOutput
- type ListProcessingJobsInput
- type ListProcessingJobsOutput
- type ListSubscribedWorkteamsInput
- type ListSubscribedWorkteamsOutput
- type ListTagsInput
- type ListTagsOutput
- type ListTrainingJobsForHyperParameterTuningJobInput
- type ListTrainingJobsForHyperParameterTuningJobOutput
- type ListTrainingJobsInput
- type ListTrainingJobsOutput
- type ListTransformJobsInput
- type ListTransformJobsOutput
- type ListTrialComponentsInput
- type ListTrialComponentsOutput
- type ListTrialsInput
- type ListTrialsOutput
- type ListUserProfilesInput
- type ListUserProfilesOutput
- type ListWorkforcesInput
- type ListWorkforcesOutput
- type ListWorkteamsInput
- type ListWorkteamsOutput
- type Options
- func (o Options) Copy() Options
- func (o Options) GetCredentials() aws.CredentialsProvider
- func (o Options) GetEndpointOptions() ResolverOptions
- func (o Options) GetEndpointResolver() EndpointResolver
- func (o Options) GetHTTPSignerV4() HTTPSignerV4
- func (o Options) GetRegion() string
- func (o Options) GetRetryer() retry.Retryer
- type RenderUiTemplateInput
- type RenderUiTemplateOutput
- type ResolveEndpoint
- func (m *ResolveEndpoint) HandleSerialize(ctx context.Context, in middleware.SerializeInput, next middleware.SerializeHandler) ( out middleware.SerializeOutput, metadata middleware.Metadata, err error, )
- func (*ResolveEndpoint) ID() string
- type ResolveEndpointMiddlewareOptions
- type ResolverOptions
- type SearchInput
- type SearchOutput
- type StartMonitoringScheduleInput
- type StartMonitoringScheduleOutput
- type StartNotebookInstanceInput
- type StartNotebookInstanceOutput
- type StopAutoMLJobInput
- type StopAutoMLJobOutput
- type StopCompilationJobInput
- type StopCompilationJobOutput
- type StopHyperParameterTuningJobInput
- type StopHyperParameterTuningJobOutput
- type StopLabelingJobInput
- type StopLabelingJobOutput
- type StopMonitoringScheduleInput
- type StopMonitoringScheduleOutput
- type StopNotebookInstanceInput
- type StopNotebookInstanceOutput
- type StopProcessingJobInput
- type StopProcessingJobOutput
- type StopTrainingJobInput
- type StopTrainingJobOutput
- type StopTransformJobInput
- type StopTransformJobOutput
- type UpdateCodeRepositoryInput
- type UpdateCodeRepositoryOutput
- type UpdateDomainInput
- type UpdateDomainOutput
- type UpdateEndpointInput
- type UpdateEndpointOutput
- type UpdateEndpointWeightsAndCapacitiesInput
- type UpdateEndpointWeightsAndCapacitiesOutput
- type UpdateExperimentInput
- type UpdateExperimentOutput
- type UpdateMonitoringScheduleInput
- type UpdateMonitoringScheduleOutput
- type UpdateNotebookInstanceInput
- type UpdateNotebookInstanceLifecycleConfigInput
- type UpdateNotebookInstanceLifecycleConfigOutput
- type UpdateNotebookInstanceOutput
- type UpdateTrialComponentInput
- type UpdateTrialComponentOutput
- type UpdateTrialInput
- type UpdateTrialOutput
- type UpdateUserProfileInput
- type UpdateUserProfileOutput
- type UpdateWorkforceInput
- type UpdateWorkforceOutput
- type UpdateWorkteamInput
- type UpdateWorkteamOutput
Constants ¶
const ServiceAPIVersion = "2017-07-24"
const ServiceID = "SageMaker"
Functions ¶
func AddResolveEndpointMiddleware ¶
func AddResolveEndpointMiddleware(stack *middleware.Stack, options ResolveEndpointMiddlewareOptions)
func NewDefaultEndpointResolver ¶
func NewDefaultEndpointResolver() *internalendpoints.Resolver
NewDefaultEndpointResolver constructs a new service endpoint resolver
func RemoveResolveEndpointMiddleware ¶
func RemoveResolveEndpointMiddleware(stack *middleware.Stack) error
Types ¶
type AddTagsInput ¶
type AddTagsInput struct { // An array of Tag objects. Each tag is a key-value pair. Only the key parameter is // required. If you don't specify a value, Amazon SageMaker sets the value to an // empty string. Tags []*types.Tag // The Amazon Resource Name (ARN) of the resource that you want to tag. ResourceArn *string }
type AddTagsOutput ¶
type AddTagsOutput struct { // A list of tags associated with the Amazon SageMaker resource. Tags []*types.Tag // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type AssociateTrialComponentInput ¶
type AssociateTrialComponentInput struct { // The name of the component to associated with the trial. TrialComponentName *string // The name of the trial to associate with. TrialName *string }
type AssociateTrialComponentOutput ¶
type AssociateTrialComponentOutput struct { // The ARN of the trial component. TrialComponentArn *string // The Amazon Resource Name (ARN) of the trial. TrialArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type Client ¶
type Client struct {
// contains filtered or unexported fields
}
Provides APIs for creating and managing Amazon SageMaker resources. Other Resources:
- Amazon SageMaker Developer Guide
(https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user)
* Amazon Augmented AI Runtime API Reference (https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html)
func New ¶
New returns an initialized Client based on the functional options. Provide additional functional options to further configure the behavior of the client, such as changing the client's endpoint or adding custom middleware behavior.
func NewFromConfig ¶
NewFromConfig returns a new client from the provided config.
func (*Client) AddTags ¶
func (c *Client) AddTags(ctx context.Context, params *AddTagsInput, optFns ...func(*Options)) (*AddTagsOutput, error)
Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies (https://aws.amazon.com/answers/account-management/aws-tagging-strategies/). Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob ()
func (*Client) AssociateTrialComponent ¶
func (c *Client) AssociateTrialComponent(ctx context.Context, params *AssociateTrialComponentInput, optFns ...func(*Options)) (*AssociateTrialComponentOutput, error)
Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent () API.
func (*Client) CreateAlgorithm ¶
func (c *Client) CreateAlgorithm(ctx context.Context, params *CreateAlgorithmInput, optFns ...func(*Options)) (*CreateAlgorithmOutput, error)
Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
func (*Client) CreateApp ¶
func (c *Client) CreateApp(ctx context.Context, params *CreateAppInput, optFns ...func(*Options)) (*CreateAppOutput, error)
Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.</p>
func (*Client) CreateAutoMLJob ¶
func (c *Client) CreateAutoMLJob(ctx context.Context, params *CreateAutoMLJobInput, optFns ...func(*Options)) (*CreateAutoMLJobOutput, error)
Creates an AutoPilot job. After you run an AutoPilot job, you can find the best performing model by calling , and then deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html). For information about how to use AutoPilot, see Use AutoPilot to Automate Model Development (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html).
func (*Client) CreateCodeRepository ¶
func (c *Client) CreateCodeRepository(ctx context.Context, params *CreateCodeRepositoryInput, optFns ...func(*Options)) (*CreateCodeRepositoryOutput, error)
Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any other Git repository.
func (*Client) CreateCompilationJob ¶
func (c *Client) CreateCompilationJob(ctx context.Context, params *CreateCompilationJobInput, optFns ...func(*Options)) (*CreateCompilationJobOutput, error)
Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following:
A name for the compilation job
*
Information about the input model artifacts
- The output location for the
compiled model and the device (target) that the model runs on
- The Amazon
Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.
You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob (). To get information about a particular model compilation job, use DescribeCompilationJob (). To get information about multiple model compilation jobs, use ListCompilationJobs ().
func (*Client) CreateDomain ¶
func (c *Client) CreateDomain(ctx context.Context, params *CreateDomainInput, optFns ...func(*Options)) (*CreateDomainOutput, error)
Creates a Domain used by SageMaker Studio. A domain consists of an associated directory, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other. When a domain is created, an Amazon Elastic File System (EFS) volume is also created for use by all of the users within the domain. Each user receives a private home directory within the EFS for notebooks, Git repositories, and data files. All traffic between the domain and the EFS volume is communicated through the specified subnet IDs. All other traffic goes over the Internet through an Amazon SageMaker system VPC. The EFS traffic uses the NFS/TCP protocol over port 2049. NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully.
func (*Client) CreateEndpoint ¶
func (c *Client) CreateEndpoint(ctx context.Context, params *CreateEndpointInput, optFns ...func(*Options)) (*CreateEndpointOutput, error)
Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig () API. Use this API to deploy models using Amazon SageMaker hosting services. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto) You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. The endpoint name must be unique within an AWS Region in your AWS account. When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. <note> <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html"> <code>Eventually Consistent Reads</code> </a>, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p> </note> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a>DescribeEndpoint</a> API.</p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS in an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p>
func (*Client) CreateEndpointConfig ¶
func (c *Client) CreateEndpointConfig(ctx context.Context, params *CreateEndpointConfigInput, optFns ...func(*Options)) (*CreateEndpointConfigOutput, error)
Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint () API. Use this API if you want to use Amazon SageMaker hosting services to deploy models into production. In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto) When you call CreateEndpoint (), a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads (https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html), the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig () before calling CreateEndpoint () to minimize the potential impact of a DynamoDB eventually consistent read.
func (*Client) CreateExperiment ¶
func (c *Client) CreateExperiment(ctx context.Context, params *CreateExperimentInput, optFns ...func(*Options)) (*CreateExperimentOutput, error)
Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search () API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment () API. To get a list of all your experiments, call the ListExperiments () API. To view an experiment's properties, call the DescribeExperiment () API. To get a list of all the trials associated with an experiment, call the ListTrials () API. To create a trial call the CreateTrial () API.
func (*Client) CreateFlowDefinition ¶
func (c *Client) CreateFlowDefinition(ctx context.Context, params *CreateFlowDefinitionInput, optFns ...func(*Options)) (*CreateFlowDefinitionOutput, error)
Creates a flow definition.
func (*Client) CreateHumanTaskUi ¶
func (c *Client) CreateHumanTaskUi(ctx context.Context, params *CreateHumanTaskUiInput, optFns ...func(*Options)) (*CreateHumanTaskUiOutput, error)
Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
func (*Client) CreateHyperParameterTuningJob ¶
func (c *Client) CreateHyperParameterTuningJob(ctx context.Context, params *CreateHyperParameterTuningJobInput, optFns ...func(*Options)) (*CreateHyperParameterTuningJobOutput, error)
Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
func (*Client) CreateLabelingJob ¶
func (c *Client) CreateLabelingJob(ctx context.Context, params *CreateLabelingJobInput, optFns ...func(*Options)) (*CreateLabelingJobOutput, error)
Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers:
- A private workforce that you
create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.
- One or more vendors that you select
from the AWS Marketplace. Vendors provide expertise in specific areas.
*
The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.
You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html). The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html). The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
func (*Client) CreateModel ¶
func (c *Client) CreateModel(ctx context.Context, params *CreateModelInput, optFns ...func(*Options)) (*CreateModelOutput, error)
Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto) To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
func (*Client) CreateModelPackage ¶
func (c *Client) CreateModelPackage(ctx context.Context, params *CreateModelPackageInput, optFns ...func(*Options)) (*CreateModelPackageOutput, error)
Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
func (*Client) CreateMonitoringSchedule ¶
func (c *Client) CreateMonitoringSchedule(ctx context.Context, params *CreateMonitoringScheduleInput, optFns ...func(*Options)) (*CreateMonitoringScheduleOutput, error)
Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.
func (*Client) CreateNotebookInstance ¶
func (c *Client) CreateNotebookInstance(ctx context.Context, params *CreateNotebookInstanceInput, optFns ...func(*Options)) (*CreateNotebookInstanceOutput, error)
Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. After receiving the request, Amazon SageMaker does the following:
- Creates a network interface
in the Amazon SageMaker VPC.
- (Option) If you specified SubnetId, Amazon
SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC. </li> <li> <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.</p> <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
func (*Client) CreateNotebookInstanceLifecycleConfig ¶
func (c *Client) CreateNotebookInstanceLifecycleConfig(ctx context.Context, params *CreateNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*CreateNotebookInstanceLifecycleConfigOutput, error)
Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html).
func (*Client) CreatePresignedDomainUrl ¶
func (c *Client) CreatePresignedDomainUrl(ctx context.Context, params *CreatePresignedDomainUrlInput, optFns ...func(*Options)) (*CreatePresignedDomainUrlOutput, error)
Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.
func (*Client) CreatePresignedNotebookInstanceUrl ¶
func (c *Client) CreatePresignedNotebookInstanceUrl(ctx context.Context, params *CreatePresignedNotebookInstanceUrlInput, optFns ...func(*Options)) (*CreatePresignedNotebookInstanceUrlOutput, error)
Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address (https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter). The URL that you get from a call to CreatePresignedNotebookInstanceUrl () is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
func (*Client) CreateProcessingJob ¶
func (c *Client) CreateProcessingJob(ctx context.Context, params *CreateProcessingJobInput, optFns ...func(*Options)) (*CreateProcessingJobOutput, error)
Creates a processing job.
func (*Client) CreateTrainingJob ¶
func (c *Client) CreateTrainingJob(ctx context.Context, params *CreateTrainingJobInput, optFns ...func(*Options)) (*CreateTrainingJobOutput, error)
Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> </li> <li> <p> <code>InputDataConfig</code> - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training. </p> <p></p> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot Training</a>. </p> </li> <li> <p> <code>RoleARN</code> - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - To help cap training costs, use <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use <code>MaxWaitTimeInSeconds</code> to specify how long you are willing to wait for a managed spot training job to complete. </p> </li> </ul> <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
func (*Client) CreateTransformJob ¶
func (c *Client) CreateTransformJob(ctx context.Context, params *CreateTransformJobInput, optFns ...func(*Options)) (*CreateTransformJobOutput, error)
Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following:
- TransformJobName - Identifies the transform job. The name must
be unique within an AWS Region in an AWS account.
- ModelName - Identifies
the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel ().
- TransformInput - Describes the dataset to be
transformed and the Amazon S3 location where it is stored.
*
TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
- TransformResources
- Identifies the ML compute instances for the transform job.
For more information about how batch transformation works, see Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html).
func (*Client) CreateTrial ¶
func (c *Client) CreateTrial(ctx context.Context, params *CreateTrialInput, optFns ...func(*Options)) (*CreateTrialOutput, error)
Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial and then use the Search () API to search for the tags. To get a list of all your trials, call the ListTrials () API. To view a trial's properties, call the DescribeTrial () API. To create a trial component, call the CreateTrialComponent () API.
func (*Client) CreateTrialComponent ¶
func (c *Client) CreateTrialComponent(ctx context.Context, params *CreateTrialComponentInput, optFns ...func(*Options)) (*CreateTrialComponentOutput, error)
Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials. Trial components include pre-processing jobs, training jobs, and batch transform jobs. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial component and then use the Search () API to search for the tags. CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error.
func (*Client) CreateUserProfile ¶
func (c *Client) CreateUserProfile(ctx context.Context, params *CreateUserProfileInput, optFns ...func(*Options)) (*CreateUserProfileOutput, error)
Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
func (*Client) CreateWorkforce ¶
func (c *Client) CreateWorkforce(ctx context.Context, params *CreateWorkforceInput, optFns ...func(*Options)) (*CreateWorkforceOutput, error)
Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region. <p>If you want to create a new workforce in an AWS Region where the a workforce already exists, use the API operation to delete the existing workforce and then use this operation to create a new workforce.</p> <p>To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in <code>CognitoConfig</code>. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html"> Create a Private Workforce (Amazon Cognito)</a>.</p> <p>To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in <code>OidcConfig</code>. You must create a OIDC IdP workforce using this API operation. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private-oidc.html"> Create a Private Workforce (OIDC IdP)</a>.</p>
func (*Client) CreateWorkteam ¶
func (c *Client) CreateWorkteam(ctx context.Context, params *CreateWorkteamInput, optFns ...func(*Options)) (*CreateWorkteamOutput, error)
Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
func (*Client) DeleteAlgorithm ¶
func (c *Client) DeleteAlgorithm(ctx context.Context, params *DeleteAlgorithmInput, optFns ...func(*Options)) (*DeleteAlgorithmOutput, error)
Removes the specified algorithm from your account.
func (*Client) DeleteApp ¶
func (c *Client) DeleteApp(ctx context.Context, params *DeleteAppInput, optFns ...func(*Options)) (*DeleteAppOutput, error)
Used to stop and delete an app.
func (*Client) DeleteCodeRepository ¶
func (c *Client) DeleteCodeRepository(ctx context.Context, params *DeleteCodeRepositoryInput, optFns ...func(*Options)) (*DeleteCodeRepositoryOutput, error)
Deletes the specified Git repository from your account.
func (*Client) DeleteDomain ¶
func (c *Client) DeleteDomain(ctx context.Context, params *DeleteDomainInput, optFns ...func(*Options)) (*DeleteDomainOutput, error)
Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.
func (*Client) DeleteEndpoint ¶
func (c *Client) DeleteEndpoint(ctx context.Context, params *DeleteEndpointInput, optFns ...func(*Options)) (*DeleteEndpointOutput, error)
Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant (http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html) API call.
func (*Client) DeleteEndpointConfig ¶
func (c *Client) DeleteEndpointConfig(ctx context.Context, params *DeleteEndpointConfigInput, optFns ...func(*Options)) (*DeleteEndpointConfigOutput, error)
Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
func (*Client) DeleteExperiment ¶
func (c *Client) DeleteExperiment(ctx context.Context, params *DeleteExperimentInput, optFns ...func(*Options)) (*DeleteExperimentOutput, error)
Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials () API to get a list of the trials associated with the experiment.
func (*Client) DeleteFlowDefinition ¶
func (c *Client) DeleteFlowDefinition(ctx context.Context, params *DeleteFlowDefinitionInput, optFns ...func(*Options)) (*DeleteFlowDefinitionOutput, error)
Deletes the specified flow definition.
func (*Client) DeleteHumanTaskUi ¶
func (c *Client) DeleteHumanTaskUi(ctx context.Context, params *DeleteHumanTaskUiInput, optFns ...func(*Options)) (*DeleteHumanTaskUiOutput, error)
Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
func (*Client) DeleteModel ¶
func (c *Client) DeleteModel(ctx context.Context, params *DeleteModelInput, optFns ...func(*Options)) (*DeleteModelOutput, error)
Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel () API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
func (*Client) DeleteModelPackage ¶
func (c *Client) DeleteModelPackage(ctx context.Context, params *DeleteModelPackageInput, optFns ...func(*Options)) (*DeleteModelPackageOutput, error)
Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
func (*Client) DeleteMonitoringSchedule ¶
func (c *Client) DeleteMonitoringSchedule(ctx context.Context, params *DeleteMonitoringScheduleInput, optFns ...func(*Options)) (*DeleteMonitoringScheduleOutput, error)
Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.
func (*Client) DeleteNotebookInstance ¶
func (c *Client) DeleteNotebookInstance(ctx context.Context, params *DeleteNotebookInstanceInput, optFns ...func(*Options)) (*DeleteNotebookInstanceOutput, error)
Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API. When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
func (*Client) DeleteNotebookInstanceLifecycleConfig ¶
func (c *Client) DeleteNotebookInstanceLifecycleConfig(ctx context.Context, params *DeleteNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*DeleteNotebookInstanceLifecycleConfigOutput, error)
Deletes a notebook instance lifecycle configuration.
func (*Client) DeleteTags ¶
func (c *Client) DeleteTags(ctx context.Context, params *DeleteTagsInput, optFns ...func(*Options)) (*DeleteTagsOutput, error)
Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.
func (*Client) DeleteTrial ¶
func (c *Client) DeleteTrial(ctx context.Context, params *DeleteTrialInput, optFns ...func(*Options)) (*DeleteTrialOutput, error)
Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent () API to get the list of trial components.
func (*Client) DeleteTrialComponent ¶
func (c *Client) DeleteTrialComponent(ctx context.Context, params *DeleteTrialComponentInput, optFns ...func(*Options)) (*DeleteTrialComponentOutput, error)
Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent () API.
func (*Client) DeleteUserProfile ¶
func (c *Client) DeleteUserProfile(ctx context.Context, params *DeleteUserProfileInput, optFns ...func(*Options)) (*DeleteUserProfileOutput, error)
Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
func (*Client) DeleteWorkforce ¶
func (c *Client) DeleteWorkforce(ctx context.Context, params *DeleteWorkforceInput, optFns ...func(*Options)) (*DeleteWorkforceOutput, error)
Use this operation to delete a workforce. <p>If you want to create a new workforce in an AWS Region where the a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce.</p>
func (*Client) DeleteWorkteam ¶
func (c *Client) DeleteWorkteam(ctx context.Context, params *DeleteWorkteamInput, optFns ...func(*Options)) (*DeleteWorkteamOutput, error)
Deletes an existing work team. This operation can't be undone.
func (*Client) DescribeAlgorithm ¶
func (c *Client) DescribeAlgorithm(ctx context.Context, params *DescribeAlgorithmInput, optFns ...func(*Options)) (*DescribeAlgorithmOutput, error)
Returns a description of the specified algorithm that is in your account.
func (*Client) DescribeApp ¶
func (c *Client) DescribeApp(ctx context.Context, params *DescribeAppInput, optFns ...func(*Options)) (*DescribeAppOutput, error)
Describes the app.
func (*Client) DescribeAutoMLJob ¶
func (c *Client) DescribeAutoMLJob(ctx context.Context, params *DescribeAutoMLJobInput, optFns ...func(*Options)) (*DescribeAutoMLJobOutput, error)
Returns information about an Amazon SageMaker job.
func (*Client) DescribeCodeRepository ¶
func (c *Client) DescribeCodeRepository(ctx context.Context, params *DescribeCodeRepositoryInput, optFns ...func(*Options)) (*DescribeCodeRepositoryOutput, error)
Gets details about the specified Git repository.
func (*Client) DescribeCompilationJob ¶
func (c *Client) DescribeCompilationJob(ctx context.Context, params *DescribeCompilationJobInput, optFns ...func(*Options)) (*DescribeCompilationJobOutput, error)
Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob (). To get information about multiple model compilation jobs, use ListCompilationJobs ().
func (*Client) DescribeDomain ¶
func (c *Client) DescribeDomain(ctx context.Context, params *DescribeDomainInput, optFns ...func(*Options)) (*DescribeDomainOutput, error)
The description of the domain.
func (*Client) DescribeEndpoint ¶
func (c *Client) DescribeEndpoint(ctx context.Context, params *DescribeEndpointInput, optFns ...func(*Options)) (*DescribeEndpointOutput, error)
Returns the description of an endpoint.
func (*Client) DescribeEndpointConfig ¶
func (c *Client) DescribeEndpointConfig(ctx context.Context, params *DescribeEndpointConfigInput, optFns ...func(*Options)) (*DescribeEndpointConfigOutput, error)
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
func (*Client) DescribeExperiment ¶
func (c *Client) DescribeExperiment(ctx context.Context, params *DescribeExperimentInput, optFns ...func(*Options)) (*DescribeExperimentOutput, error)
Provides a list of an experiment's properties.
func (*Client) DescribeFlowDefinition ¶
func (c *Client) DescribeFlowDefinition(ctx context.Context, params *DescribeFlowDefinitionInput, optFns ...func(*Options)) (*DescribeFlowDefinitionOutput, error)
Returns information about the specified flow definition.
func (*Client) DescribeHumanTaskUi ¶
func (c *Client) DescribeHumanTaskUi(ctx context.Context, params *DescribeHumanTaskUiInput, optFns ...func(*Options)) (*DescribeHumanTaskUiOutput, error)
Returns information about the requested human task user interface (worker task template).
func (*Client) DescribeHyperParameterTuningJob ¶
func (c *Client) DescribeHyperParameterTuningJob(ctx context.Context, params *DescribeHyperParameterTuningJobInput, optFns ...func(*Options)) (*DescribeHyperParameterTuningJobOutput, error)
Gets a description of a hyperparameter tuning job.
func (*Client) DescribeLabelingJob ¶
func (c *Client) DescribeLabelingJob(ctx context.Context, params *DescribeLabelingJobInput, optFns ...func(*Options)) (*DescribeLabelingJobOutput, error)
Gets information about a labeling job.
func (*Client) DescribeModel ¶
func (c *Client) DescribeModel(ctx context.Context, params *DescribeModelInput, optFns ...func(*Options)) (*DescribeModelOutput, error)
Describes a model that you created using the CreateModel API.
func (*Client) DescribeModelPackage ¶
func (c *Client) DescribeModelPackage(ctx context.Context, params *DescribeModelPackageInput, optFns ...func(*Options)) (*DescribeModelPackageOutput, error)
Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
func (*Client) DescribeMonitoringSchedule ¶
func (c *Client) DescribeMonitoringSchedule(ctx context.Context, params *DescribeMonitoringScheduleInput, optFns ...func(*Options)) (*DescribeMonitoringScheduleOutput, error)
Describes the schedule for a monitoring job.
func (*Client) DescribeNotebookInstance ¶
func (c *Client) DescribeNotebookInstance(ctx context.Context, params *DescribeNotebookInstanceInput, optFns ...func(*Options)) (*DescribeNotebookInstanceOutput, error)
Returns information about a notebook instance.
func (*Client) DescribeNotebookInstanceLifecycleConfig ¶
func (c *Client) DescribeNotebookInstanceLifecycleConfig(ctx context.Context, params *DescribeNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*DescribeNotebookInstanceLifecycleConfigOutput, error)
Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html).
func (*Client) DescribeProcessingJob ¶
func (c *Client) DescribeProcessingJob(ctx context.Context, params *DescribeProcessingJobInput, optFns ...func(*Options)) (*DescribeProcessingJobOutput, error)
Returns a description of a processing job.
func (*Client) DescribeSubscribedWorkteam ¶
func (c *Client) DescribeSubscribedWorkteam(ctx context.Context, params *DescribeSubscribedWorkteamInput, optFns ...func(*Options)) (*DescribeSubscribedWorkteamOutput, error)
Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
func (*Client) DescribeTrainingJob ¶
func (c *Client) DescribeTrainingJob(ctx context.Context, params *DescribeTrainingJobInput, optFns ...func(*Options)) (*DescribeTrainingJobOutput, error)
Returns information about a training job.
func (*Client) DescribeTransformJob ¶
func (c *Client) DescribeTransformJob(ctx context.Context, params *DescribeTransformJobInput, optFns ...func(*Options)) (*DescribeTransformJobOutput, error)
Returns information about a transform job.
func (*Client) DescribeTrial ¶
func (c *Client) DescribeTrial(ctx context.Context, params *DescribeTrialInput, optFns ...func(*Options)) (*DescribeTrialOutput, error)
Provides a list of a trial's properties.
func (*Client) DescribeTrialComponent ¶
func (c *Client) DescribeTrialComponent(ctx context.Context, params *DescribeTrialComponentInput, optFns ...func(*Options)) (*DescribeTrialComponentOutput, error)
Provides a list of a trials component's properties.
func (*Client) DescribeUserProfile ¶
func (c *Client) DescribeUserProfile(ctx context.Context, params *DescribeUserProfileInput, optFns ...func(*Options)) (*DescribeUserProfileOutput, error)
Describes a user profile. For more information, see CreateUserProfile.
func (*Client) DescribeWorkforce ¶
func (c *Client) DescribeWorkforce(ctx context.Context, params *DescribeWorkforceInput, optFns ...func(*Options)) (*DescribeWorkforceOutput, error)
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)). Allowable IP address ranges are the IP addresses that workers can use to access tasks. This operation applies only to private workforces.
func (*Client) DescribeWorkteam ¶
func (c *Client) DescribeWorkteam(ctx context.Context, params *DescribeWorkteamInput, optFns ...func(*Options)) (*DescribeWorkteamOutput, error)
Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
func (*Client) DisassociateTrialComponent ¶
func (c *Client) DisassociateTrialComponent(ctx context.Context, params *DisassociateTrialComponentInput, optFns ...func(*Options)) (*DisassociateTrialComponentOutput, error)
Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent () API. To get a list of the trials a component is associated with, use the Search () API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.
func (*Client) GetSearchSuggestions ¶
func (c *Client) GetSearchSuggestions(ctx context.Context, params *GetSearchSuggestionsInput, optFns ...func(*Options)) (*GetSearchSuggestionsOutput, error)
An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
func (*Client) ListAlgorithms ¶
func (c *Client) ListAlgorithms(ctx context.Context, params *ListAlgorithmsInput, optFns ...func(*Options)) (*ListAlgorithmsOutput, error)
Lists the machine learning algorithms that have been created.
func (*Client) ListApps ¶
func (c *Client) ListApps(ctx context.Context, params *ListAppsInput, optFns ...func(*Options)) (*ListAppsOutput, error)
Lists apps.
func (*Client) ListAutoMLJobs ¶
func (c *Client) ListAutoMLJobs(ctx context.Context, params *ListAutoMLJobsInput, optFns ...func(*Options)) (*ListAutoMLJobsOutput, error)
Request a list of jobs.
func (*Client) ListCandidatesForAutoMLJob ¶
func (c *Client) ListCandidatesForAutoMLJob(ctx context.Context, params *ListCandidatesForAutoMLJobInput, optFns ...func(*Options)) (*ListCandidatesForAutoMLJobOutput, error)
List the Candidates created for the job.
func (*Client) ListCodeRepositories ¶
func (c *Client) ListCodeRepositories(ctx context.Context, params *ListCodeRepositoriesInput, optFns ...func(*Options)) (*ListCodeRepositoriesOutput, error)
Gets a list of the Git repositories in your account.
func (*Client) ListCompilationJobs ¶
func (c *Client) ListCompilationJobs(ctx context.Context, params *ListCompilationJobsInput, optFns ...func(*Options)) (*ListCompilationJobsOutput, error)
Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob (). To get information about a particular model compilation job you have created, use DescribeCompilationJob ().
func (*Client) ListDomains ¶
func (c *Client) ListDomains(ctx context.Context, params *ListDomainsInput, optFns ...func(*Options)) (*ListDomainsOutput, error)
Lists the domains.
func (*Client) ListEndpointConfigs ¶
func (c *Client) ListEndpointConfigs(ctx context.Context, params *ListEndpointConfigsInput, optFns ...func(*Options)) (*ListEndpointConfigsOutput, error)
Lists endpoint configurations.
func (*Client) ListEndpoints ¶
func (c *Client) ListEndpoints(ctx context.Context, params *ListEndpointsInput, optFns ...func(*Options)) (*ListEndpointsOutput, error)
Lists endpoints.
func (*Client) ListExperiments ¶
func (c *Client) ListExperiments(ctx context.Context, params *ListExperimentsInput, optFns ...func(*Options)) (*ListExperimentsOutput, error)
Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
func (*Client) ListFlowDefinitions ¶
func (c *Client) ListFlowDefinitions(ctx context.Context, params *ListFlowDefinitionsInput, optFns ...func(*Options)) (*ListFlowDefinitionsOutput, error)
Returns information about the flow definitions in your account.
func (*Client) ListHumanTaskUis ¶
func (c *Client) ListHumanTaskUis(ctx context.Context, params *ListHumanTaskUisInput, optFns ...func(*Options)) (*ListHumanTaskUisOutput, error)
Returns information about the human task user interfaces in your account.
func (*Client) ListHyperParameterTuningJobs ¶
func (c *Client) ListHyperParameterTuningJobs(ctx context.Context, params *ListHyperParameterTuningJobsInput, optFns ...func(*Options)) (*ListHyperParameterTuningJobsOutput, error)
Gets a list of HyperParameterTuningJobSummary () objects that describe the hyperparameter tuning jobs launched in your account.
func (*Client) ListLabelingJobs ¶
func (c *Client) ListLabelingJobs(ctx context.Context, params *ListLabelingJobsInput, optFns ...func(*Options)) (*ListLabelingJobsOutput, error)
Gets a list of labeling jobs.
func (*Client) ListLabelingJobsForWorkteam ¶
func (c *Client) ListLabelingJobsForWorkteam(ctx context.Context, params *ListLabelingJobsForWorkteamInput, optFns ...func(*Options)) (*ListLabelingJobsForWorkteamOutput, error)
Gets a list of labeling jobs assigned to a specified work team.
func (*Client) ListModelPackages ¶
func (c *Client) ListModelPackages(ctx context.Context, params *ListModelPackagesInput, optFns ...func(*Options)) (*ListModelPackagesOutput, error)
Lists the model packages that have been created.
func (*Client) ListModels ¶
func (c *Client) ListModels(ctx context.Context, params *ListModelsInput, optFns ...func(*Options)) (*ListModelsOutput, error)
Lists models created with the CreateModel () API.
func (*Client) ListMonitoringExecutions ¶
func (c *Client) ListMonitoringExecutions(ctx context.Context, params *ListMonitoringExecutionsInput, optFns ...func(*Options)) (*ListMonitoringExecutionsOutput, error)
Returns list of all monitoring job executions.
func (*Client) ListMonitoringSchedules ¶
func (c *Client) ListMonitoringSchedules(ctx context.Context, params *ListMonitoringSchedulesInput, optFns ...func(*Options)) (*ListMonitoringSchedulesOutput, error)
Returns list of all monitoring schedules.
func (*Client) ListNotebookInstanceLifecycleConfigs ¶
func (c *Client) ListNotebookInstanceLifecycleConfigs(ctx context.Context, params *ListNotebookInstanceLifecycleConfigsInput, optFns ...func(*Options)) (*ListNotebookInstanceLifecycleConfigsOutput, error)
Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig () API.
func (*Client) ListNotebookInstances ¶
func (c *Client) ListNotebookInstances(ctx context.Context, params *ListNotebookInstancesInput, optFns ...func(*Options)) (*ListNotebookInstancesOutput, error)
Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.
func (*Client) ListProcessingJobs ¶
func (c *Client) ListProcessingJobs(ctx context.Context, params *ListProcessingJobsInput, optFns ...func(*Options)) (*ListProcessingJobsOutput, error)
Lists processing jobs that satisfy various filters.
func (*Client) ListSubscribedWorkteams ¶
func (c *Client) ListSubscribedWorkteams(ctx context.Context, params *ListSubscribedWorkteamsInput, optFns ...func(*Options)) (*ListSubscribedWorkteamsOutput, error)
Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
func (*Client) ListTags ¶
func (c *Client) ListTags(ctx context.Context, params *ListTagsInput, optFns ...func(*Options)) (*ListTagsOutput, error)
Returns the tags for the specified Amazon SageMaker resource.
func (*Client) ListTrainingJobs ¶
func (c *Client) ListTrainingJobs(ctx context.Context, params *ListTrainingJobsInput, optFns ...func(*Options)) (*ListTrainingJobsOutput, error)
Lists training jobs.
func (*Client) ListTrainingJobsForHyperParameterTuningJob ¶
func (c *Client) ListTrainingJobsForHyperParameterTuningJob(ctx context.Context, params *ListTrainingJobsForHyperParameterTuningJobInput, optFns ...func(*Options)) (*ListTrainingJobsForHyperParameterTuningJobOutput, error)
Gets a list of TrainingJobSummary () objects that describe the training jobs that a hyperparameter tuning job launched.
func (*Client) ListTransformJobs ¶
func (c *Client) ListTransformJobs(ctx context.Context, params *ListTransformJobsInput, optFns ...func(*Options)) (*ListTransformJobsOutput, error)
Lists transform jobs.
func (*Client) ListTrialComponents ¶
func (c *Client) ListTrialComponents(ctx context.Context, params *ListTrialComponentsInput, optFns ...func(*Options)) (*ListTrialComponentsOutput, error)
Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:
ExperimentName
SourceArn
TrialName
func (*Client) ListTrials ¶
func (c *Client) ListTrials(ctx context.Context, params *ListTrialsInput, optFns ...func(*Options)) (*ListTrialsOutput, error)
Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
func (*Client) ListUserProfiles ¶
func (c *Client) ListUserProfiles(ctx context.Context, params *ListUserProfilesInput, optFns ...func(*Options)) (*ListUserProfilesOutput, error)
Lists user profiles.
func (*Client) ListWorkforces ¶
func (c *Client) ListWorkforces(ctx context.Context, params *ListWorkforcesInput, optFns ...func(*Options)) (*ListWorkforcesOutput, error)
Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.
func (*Client) ListWorkteams ¶
func (c *Client) ListWorkteams(ctx context.Context, params *ListWorkteamsInput, optFns ...func(*Options)) (*ListWorkteamsOutput, error)
Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
func (*Client) RenderUiTemplate ¶
func (c *Client) RenderUiTemplate(ctx context.Context, params *RenderUiTemplateInput, optFns ...func(*Options)) (*RenderUiTemplateOutput, error)
Renders the UI template so that you can preview the worker's experience.
func (*Client) Search ¶
func (c *Client) Search(ctx context.Context, params *SearchInput, optFns ...func(*Options)) (*SearchOutput, error)
Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numeric, text, Boolean, and timestamp.
func (*Client) StartMonitoringSchedule ¶
func (c *Client) StartMonitoringSchedule(ctx context.Context, params *StartMonitoringScheduleInput, optFns ...func(*Options)) (*StartMonitoringScheduleOutput, error)
Starts a previously stopped monitoring schedule. New monitoring schedules are immediately started after creation.
func (*Client) StartNotebookInstance ¶
func (c *Client) StartNotebookInstance(ctx context.Context, params *StartNotebookInstanceInput, optFns ...func(*Options)) (*StartNotebookInstanceOutput, error)
Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.
func (*Client) StopAutoMLJob ¶
func (c *Client) StopAutoMLJob(ctx context.Context, params *StopAutoMLJobInput, optFns ...func(*Options)) (*StopAutoMLJobOutput, error)
A method for forcing the termination of a running job.
func (*Client) StopCompilationJob ¶
func (c *Client) StopCompilationJob(ctx context.Context, params *StopCompilationJobInput, optFns ...func(*Options)) (*StopCompilationJobOutput, error)
Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus () of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus () to Stopped.
func (*Client) StopHyperParameterTuningJob ¶
func (c *Client) StopHyperParameterTuningJob(ctx context.Context, params *StopHyperParameterTuningJobInput, optFns ...func(*Options)) (*StopHyperParameterTuningJobOutput, error)
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
func (*Client) StopLabelingJob ¶
func (c *Client) StopLabelingJob(ctx context.Context, params *StopLabelingJobInput, optFns ...func(*Options)) (*StopLabelingJobOutput, error)
Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
func (*Client) StopMonitoringSchedule ¶
func (c *Client) StopMonitoringSchedule(ctx context.Context, params *StopMonitoringScheduleInput, optFns ...func(*Options)) (*StopMonitoringScheduleOutput, error)
Stops a previously started monitoring schedule.
func (*Client) StopNotebookInstance ¶
func (c *Client) StopNotebookInstance(ctx context.Context, params *StopNotebookInstanceInput, optFns ...func(*Options)) (*StopNotebookInstanceOutput, error)
Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
func (*Client) StopProcessingJob ¶
func (c *Client) StopProcessingJob(ctx context.Context, params *StopProcessingJobInput, optFns ...func(*Options)) (*StopProcessingJobOutput, error)
Stops a processing job.
func (*Client) StopTrainingJob ¶
func (c *Client) StopTrainingJob(ctx context.Context, params *StopTrainingJobInput, optFns ...func(*Options)) (*StopTrainingJobOutput, error)
Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
func (*Client) StopTransformJob ¶
func (c *Client) StopTransformJob(ctx context.Context, params *StopTransformJobInput, optFns ...func(*Options)) (*StopTransformJobOutput, error)
Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
func (*Client) UpdateCodeRepository ¶
func (c *Client) UpdateCodeRepository(ctx context.Context, params *UpdateCodeRepositoryInput, optFns ...func(*Options)) (*UpdateCodeRepositoryOutput, error)
Updates the specified Git repository with the specified values.
func (*Client) UpdateDomain ¶
func (c *Client) UpdateDomain(ctx context.Context, params *UpdateDomainInput, optFns ...func(*Options)) (*UpdateDomainOutput, error)
Updates the default settings for new user profiles in the domain.
func (*Client) UpdateEndpoint ¶
func (c *Client) UpdateEndpoint(ctx context.Context, params *UpdateEndpointInput, optFns ...func(*Options)) (*UpdateEndpointOutput, error)
Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss). When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint () API. </p> <note> <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> <p>If you delete the <code>EndpointConfig</code> of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.</p> </note>
func (*Client) UpdateEndpointWeightsAndCapacities ¶
func (c *Client) UpdateEndpointWeightsAndCapacities(ctx context.Context, params *UpdateEndpointWeightsAndCapacitiesInput, optFns ...func(*Options)) (*UpdateEndpointWeightsAndCapacitiesOutput, error)
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint () API.
func (*Client) UpdateExperiment ¶
func (c *Client) UpdateExperiment(ctx context.Context, params *UpdateExperimentInput, optFns ...func(*Options)) (*UpdateExperimentOutput, error)
Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
func (*Client) UpdateMonitoringSchedule ¶
func (c *Client) UpdateMonitoringSchedule(ctx context.Context, params *UpdateMonitoringScheduleInput, optFns ...func(*Options)) (*UpdateMonitoringScheduleOutput, error)
Updates a previously created schedule.
func (*Client) UpdateNotebookInstance ¶
func (c *Client) UpdateNotebookInstance(ctx context.Context, params *UpdateNotebookInstanceInput, optFns ...func(*Options)) (*UpdateNotebookInstanceOutput, error)
Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
func (*Client) UpdateNotebookInstanceLifecycleConfig ¶
func (c *Client) UpdateNotebookInstanceLifecycleConfig(ctx context.Context, params *UpdateNotebookInstanceLifecycleConfigInput, optFns ...func(*Options)) (*UpdateNotebookInstanceLifecycleConfigOutput, error)
Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig () API.
func (*Client) UpdateTrial ¶
func (c *Client) UpdateTrial(ctx context.Context, params *UpdateTrialInput, optFns ...func(*Options)) (*UpdateTrialOutput, error)
Updates the display name of a trial.
func (*Client) UpdateTrialComponent ¶
func (c *Client) UpdateTrialComponent(ctx context.Context, params *UpdateTrialComponentInput, optFns ...func(*Options)) (*UpdateTrialComponentOutput, error)
Updates one or more properties of a trial component.
func (*Client) UpdateUserProfile ¶
func (c *Client) UpdateUserProfile(ctx context.Context, params *UpdateUserProfileInput, optFns ...func(*Options)) (*UpdateUserProfileOutput, error)
Updates a user profile.
func (*Client) UpdateWorkforce ¶
func (c *Client) UpdateWorkforce(ctx context.Context, params *UpdateWorkforceInput, optFns ...func(*Options)) (*UpdateWorkforceOutput, error)
Restricts access to tasks assigned to workers in the specified workforce to those within specific ranges of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html). By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied access and get a Not Found error message on the worker portal. After restricting access with this operation, you can see the allowed IP values for a private workforce with the operation. This operation applies only to private workforces.
func (*Client) UpdateWorkteam ¶
func (c *Client) UpdateWorkteam(ctx context.Context, params *UpdateWorkteamInput, optFns ...func(*Options)) (*UpdateWorkteamOutput, error)
Updates an existing work team with new member definitions or description.
type CreateAlgorithmInput ¶
type CreateAlgorithmInput struct { // Specifies details about training jobs run by this algorithm, including the // following: // // * The Amazon ECR path of the container and the version digest of // the algorithm. // // * The hyperparameters that the algorithm supports. // // * // The instance types that the algorithm supports for training. // // * Whether the // algorithm supports distributed training. // // * The metrics that the algorithm // emits to Amazon CloudWatch. // // * Which metrics that the algorithm emits can be // used as the objective metric for hyperparameter tuning jobs. // // * The input // channels that the algorithm supports for training data. For example, an // algorithm might support train, validation, and test channels. TrainingSpecification *types.TrainingSpecification // Specifies details about inference jobs that the algorithm runs, including the // following: // // * The Amazon ECR paths of containers that contain the inference // code and model artifacts. // // * The instance types that the algorithm supports // for transform jobs and real-time endpoints used for inference. // // * The input // and output content formats that the algorithm supports for inference. InferenceSpecification *types.InferenceSpecification // A description of the algorithm. AlgorithmDescription *string // Whether to certify the algorithm so that it can be listed in AWS Marketplace. CertifyForMarketplace *bool // The name of the algorithm. AlgorithmName *string // Specifies configurations for one or more training jobs and that Amazon SageMaker // runs to test the algorithm's training code and, optionally, one or more batch // transform jobs that Amazon SageMaker runs to test the algorithm's inference // code. ValidationSpecification *types.AlgorithmValidationSpecification }
type CreateAlgorithmOutput ¶
type CreateAlgorithmOutput struct { // The Amazon Resource Name (ARN) of the new algorithm. AlgorithmArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateAppInput ¶
type CreateAppInput struct { // The instance type and the Amazon Resource Name (ARN) of the SageMaker image // created on the instance. ResourceSpec *types.ResourceSpec // The name of the app. AppName *string // The type of app. AppType types.AppType // The domain ID. DomainId *string // The user profile name. UserProfileName *string // Each tag consists of a key and an optional value. Tag keys must be unique per // resource. Tags []*types.Tag }
type CreateAppOutput ¶
type CreateAppOutput struct { // The App's Amazon Resource Name (ARN). AppArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateAutoMLJobInput ¶
type CreateAutoMLJobInput struct { // Identifies an AutoPilot job. Must be unique to your account and is // case-insensitive. AutoMLJobName *string // Defines the job's objective. You provide a MetricName and AutoML will infer // minimize or maximize. If this is not provided, the most commonly used // ObjectiveMetric for problem type will be selected. AutoMLJobObjective *types.AutoMLJobObjective // Defines the kind of preprocessing and algorithms intended for the candidates. // Options include: BinaryClassification, MulticlassClassification, and Regression. ProblemType types.ProblemType // Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV. // Minimum of 1000 rows. InputDataConfig []*types.AutoMLChannel // The ARN of the role that will be used to access the data. RoleArn *string // Contains CompletionCriteria and SecurityConfig. AutoMLJobConfig *types.AutoMLJobConfig // This will generate possible candidates without training a model. A candidate is // a combination of data preprocessors, algorithms, and algorithm parameter // settings. GenerateCandidateDefinitionsOnly *bool // Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV. OutputDataConfig *types.AutoMLOutputDataConfig // Each tag consists of a key and an optional value. Tag keys must be unique per // resource. Tags []*types.Tag }
type CreateAutoMLJobOutput ¶
type CreateAutoMLJobOutput struct { // When a job is created, it is assigned a unique ARN. AutoMLJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateCodeRepositoryInput ¶
type CreateCodeRepositoryInput struct { // Specifies details about the repository, including the URL where the repository // is located, the default branch, and credentials to use to access the repository. GitConfig *types.GitConfig // The name of the Git repository. The name must have 1 to 63 characters. Valid // characters are a-z, A-Z, 0-9, and - (hyphen). CodeRepositoryName *string }
type CreateCodeRepositoryOutput ¶
type CreateCodeRepositoryOutput struct { // The Amazon Resource Name (ARN) of the new repository. CodeRepositoryArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateCompilationJobInput ¶
type CreateCompilationJobInput struct { // Provides information about the output location for the compiled model and the // target device the model runs on. OutputConfig *types.OutputConfig // Specifies a limit to how long a model compilation job can run. When the job // reaches the time limit, Amazon SageMaker ends the compilation job. Use this API // to cap model training costs. StoppingCondition *types.StoppingCondition // Provides information about the location of input model artifacts, the name and // shape of the expected data inputs, and the framework in which the model was // trained. InputConfig *types.InputConfig // The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to // perform tasks on your behalf. During model compilation, Amazon SageMaker needs // your permission to: // // * Read input data from an S3 bucket // // * Write model // artifacts to an S3 bucket // // * Write logs to Amazon CloudWatch Logs // // * // Publish metrics to Amazon CloudWatch // // You grant permissions for all of these // tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this // API must have the iam:PassRole permission. For more information, see Amazon // SageMaker Roles. // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) RoleArn *string // A name for the model compilation job. The name must be unique within the AWS // Region and within your AWS account. CompilationJobName *string }
type CreateCompilationJobOutput ¶
type CreateCompilationJobOutput struct { // If the action is successful, the service sends back an HTTP 200 response. Amazon // SageMaker returns the following data in JSON format: // // * CompilationJobArn: // The Amazon Resource Name (ARN) of the compiled job. CompilationJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateDomainInput ¶
type CreateDomainInput struct { // The ID of the Amazon Virtual Private Cloud (VPC) to use for communication with // the EFS volume. VpcId *string // The default user settings. DefaultUserSettings *types.UserSettings // The mode of authentication that members use to access the domain. AuthMode types.AuthMode // The VPC subnets to use for communication with the EFS volume. SubnetIds []*string // The AWS Key Management Service (KMS) encryption key ID. Encryption with a // customer master key (CMK) is not supported. HomeEfsFileSystemKmsKeyId *string // Tags to associated with the Domain. Each tag consists of a key and an optional // value. Tag keys must be unique per resource. Tags are searchable using the // Search () API. Tags []*types.Tag // A name for the domain. DomainName *string }
type CreateDomainOutput ¶
type CreateDomainOutput struct { // The URL to the created domain. Url *string // The Amazon Resource Name (ARN) of the created domain. DomainArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateEndpointConfigInput ¶
type CreateEndpointConfigInput struct { // The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon // SageMaker uses to encrypt data on the storage volume attached to the ML compute // instance that hosts the endpoint. The KmsKeyId can be any of the following // formats: // // * Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab // // * Key ARN: // arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab // // // * Alias name: alias/ExampleAlias // // * Alias name ARN: // arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias // // The KMS key policy must // grant permission to the IAM role that you specify in your CreateEndpoint, // UpdateEndpoint requests. For more information, refer to the AWS Key Management // Service section Using Key Policies in AWS KMS // (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) // Certain Nitro-based instances include local storage, dependent on the instance // type. Local storage volumes are encrypted using a hardware module on the // instance. You can't request a KmsKeyId when using an instance type with local // storage. If any of the models that you specify in the ProductionVariants // parameter use nitro-based instances with local storage, do not specify a value // for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any // nitro-based instances with local storage, the call to CreateEndpointConfig // fails. For a list of instance types that support local instance storage, see // Instance Store Volumes // (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes). // For more information about local instance storage encryption, see SSD Instance // Store Volumes // (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html). KmsKeyId *string // The name of the endpoint configuration. You specify this name in a // CreateEndpoint () request. EndpointConfigName *string // A list of key-value pairs. For more information, see Using Cost Allocation Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // An list of ProductionVariant objects, one for each model that you want to host // at this endpoint. ProductionVariants []*types.ProductionVariant // DataCaptureConfig *types.DataCaptureConfig }
type CreateEndpointConfigOutput ¶
type CreateEndpointConfigOutput struct { // The Amazon Resource Name (ARN) of the endpoint configuration. EndpointConfigArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateEndpointInput ¶
type CreateEndpointInput struct { // An array of key-value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what)in // the AWS Billing and Cost Management User Guide. </p> Tags []*types.Tag // The name of the endpoint. The name must be unique within an AWS Region in your // AWS account. EndpointName *string // The name of an endpoint configuration. For more information, see // CreateEndpointConfig (). EndpointConfigName *string }
type CreateEndpointOutput ¶
type CreateEndpointOutput struct { // The Amazon Resource Name (ARN) of the endpoint. EndpointArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateExperimentInput ¶
type CreateExperimentInput struct { // The description of the experiment. Description *string // The name of the experiment. The name must be unique in your AWS account and is // not case-sensitive. ExperimentName *string // The name of the experiment as displayed. The name doesn't need to be unique. If // you don't specify DisplayName, the value in ExperimentName is displayed. DisplayName *string // A list of tags to associate with the experiment. You can use Search () API to // search on the tags. Tags []*types.Tag }
type CreateExperimentOutput ¶
type CreateExperimentOutput struct { // The Amazon Resource Name (ARN) of the experiment. ExperimentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateFlowDefinitionInput ¶
type CreateFlowDefinitionInput struct { // An object containing information about the tasks the human reviewers will // perform. HumanLoopConfig *types.HumanLoopConfig // Container for configuring the source of human task requests. Use to specify if // Amazon Rekognition or Amazon Textract is used as an integration source. HumanLoopRequestSource *types.HumanLoopRequestSource // The name of your flow definition. FlowDefinitionName *string // An object containing information about the events that trigger a human workflow. HumanLoopActivationConfig *types.HumanLoopActivationConfig // An array of key-value pairs that contain metadata to help you categorize and // organize a flow definition. Each tag consists of a key and a value, both of // which you define. Tags []*types.Tag // The Amazon Resource Name (ARN) of the role needed to call other services on your // behalf. For example, // arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298. RoleArn *string // An object containing information about where the human review results will be // uploaded. OutputConfig *types.FlowDefinitionOutputConfig }
type CreateFlowDefinitionOutput ¶
type CreateFlowDefinitionOutput struct { // The Amazon Resource Name (ARN) of the flow definition you create. FlowDefinitionArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateHumanTaskUiInput ¶
type CreateHumanTaskUiInput struct { // The name of the user interface you are creating. HumanTaskUiName *string // An array of key-value pairs that contain metadata to help you categorize and // organize a human review workflow user interface. Each tag consists of a key and // a value, both of which you define. Tags []*types.Tag // The Liquid template for the worker user interface. UiTemplate *types.UiTemplate }
type CreateHumanTaskUiOutput ¶
type CreateHumanTaskUiOutput struct { // The Amazon Resource Name (ARN) of the human review workflow user interface you // create. HumanTaskUiArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateHyperParameterTuningJobInput ¶
type CreateHyperParameterTuningJobInput struct { // An array of key-value pairs. You can use tags to categorize your AWS resources // in different ways, for example, by purpose, owner, or environment. For more // information, see AWS Tagging Strategies // (https://aws.amazon.com/answers/account-management/aws-tagging-strategies/). // Tags that you specify for the tuning job are also added to all training jobs // that the tuning job launches. Tags []*types.Tag // The name of the tuning job. This name is the prefix for the names of all // training jobs that this tuning job launches. The name must be unique within the // same AWS account and AWS Region. The name must have { } to { } characters. Valid // characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case // sensitive. HyperParameterTuningJobName *string // A list of the HyperParameterTrainingJobDefinition () objects launched for this // tuning job. TrainingJobDefinitions []*types.HyperParameterTrainingJobDefinition // The HyperParameterTrainingJobDefinition () object that describes the training // jobs that this tuning job launches, including static hyperparameters, input data // configuration, output data configuration, resource configuration, and stopping // condition. TrainingJobDefinition *types.HyperParameterTrainingJobDefinition // The HyperParameterTuningJobConfig () object that describes the tuning job, // including the search strategy, the objective metric used to evaluate training // jobs, ranges of parameters to search, and resource limits for the tuning job. // For more information, see How Hyperparameter Tuning Works // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html). HyperParameterTuningJobConfig *types.HyperParameterTuningJobConfig // Specifies the configuration for starting the hyperparameter tuning job using one // or more previous tuning jobs as a starting point. The results of previous tuning // jobs are used to inform which combinations of hyperparameters to search over in // the new tuning job. All training jobs launched by the new hyperparameter tuning // job are evaluated by using the objective metric. If you specify // IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start // configuration, the training job that performs the best in the new tuning job is // compared to the best training jobs from the parent tuning jobs. From these, the // training job that performs the best as measured by the objective metric is // returned as the overall best training job. All training jobs launched by parent // hyperparameter tuning jobs and the new hyperparameter tuning jobs count against // the limit of training jobs for the tuning job. WarmStartConfig *types.HyperParameterTuningJobWarmStartConfig }
type CreateHyperParameterTuningJobOutput ¶
type CreateHyperParameterTuningJobOutput struct { // The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an // ARN to a hyperparameter tuning job when you create it. HyperParameterTuningJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateLabelingJobInput ¶
type CreateLabelingJobInput struct { // A set of conditions for stopping the labeling job. If any of the conditions are // met, the job is automatically stopped. You can use these conditions to control // the cost of data labeling. StoppingConditions *types.LabelingJobStoppingConditions // Input data for the labeling job, such as the Amazon S3 location of the data // objects and the location of the manifest file that describes the data objects. InputConfig *types.LabelingJobInputConfig // Configures the labeling task and how it is presented to workers; including, but // not limited to price, keywords, and batch size (task count). HumanTaskConfig *types.HumanTaskConfig // The name of the labeling job. This name is used to identify the job in a list of // labeling jobs. LabelingJobName *string // An array of key/value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // The S3 URL of the file that defines the categories used to label the data // objects. For 3D point cloud task types, see Create a Labeling Category // Configuration File for 3D Point Cloud Labeling Jobs // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html). // For all other built-in task types // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html) and custom // tasks // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html), // your label category configuration file must be a JSON file in the following // format. Identify the labels you want to use by replacing label_1, // label_2,...,label_n with your label categories. { // "document-version": // "2018-11-28" // // "labels": [ // // { // // "label": "label_1" // // }, // // { // // // "label": "label_2" // // }, // // ... // // { // // "label": "label_n" // // } // // // ] // // } LabelCategoryConfigS3Uri *string // The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks // on your behalf during data labeling. You must grant this role the necessary // permissions so that Amazon SageMaker can successfully complete data labeling. RoleArn *string // The attribute name to use for the label in the output manifest file. This is the // key for the key/value pair formed with the label that a worker assigns to the // object. The name can't end with "-metadata". If you are running a semantic // segmentation labeling job, the attribute name must end with "-ref". If you are // running any other kind of labeling job, the attribute name must not end with // "-ref". LabelAttributeName *string // Configures the information required to perform automated data labeling. LabelingJobAlgorithmsConfig *types.LabelingJobAlgorithmsConfig // The location of the output data and the AWS Key Management Service key ID for // the key used to encrypt the output data, if any. OutputConfig *types.LabelingJobOutputConfig }
type CreateLabelingJobOutput ¶
type CreateLabelingJobOutput struct { // The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify // the labeling job. LabelingJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateModelInput ¶
type CreateModelInput struct { // A VpcConfig () object that specifies the VPC that you want your model to connect // to. Control access to and from your model container by configuring the VPC. // VpcConfig is used in hosting services and in batch transform. For more // information, see Protect Endpoints by Using an Amazon Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html) and Protect Data // in Batch Transform Jobs by Using an Amazon Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html). VpcConfig *types.VpcConfig // Isolates the model container. No inbound or outbound network calls can be made // to or from the model container. EnableNetworkIsolation *bool // An array of key-value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume // to access model artifacts and docker image for deployment on ML compute // instances or for batch transform jobs. Deploying on ML compute instances is part // of model hosting. For more information, see Amazon SageMaker Roles // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html). To be // able to pass this role to Amazon SageMaker, the caller of this API must have the // iam:PassRole permission. ExecutionRoleArn *string // The location of the primary docker image containing inference code, associated // artifacts, and custom environment map that the inference code uses when the // model is deployed for predictions. PrimaryContainer *types.ContainerDefinition // The name of the new model. ModelName *string // Specifies the containers in the inference pipeline. Containers []*types.ContainerDefinition }
type CreateModelOutput ¶
type CreateModelOutput struct { // The ARN of the model created in Amazon SageMaker. ModelArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateModelPackageInput ¶
type CreateModelPackageInput struct { // Details about the algorithm that was used to create the model package. SourceAlgorithmSpecification *types.SourceAlgorithmSpecification // Specifies configurations for one or more transform jobs that Amazon SageMaker // runs to test the model package. ValidationSpecification *types.ModelPackageValidationSpecification // A description of the model package. ModelPackageDescription *string // Specifies details about inference jobs that can be run with models based on this // model package, including the following: // // * The Amazon ECR paths of // containers that contain the inference code and model artifacts. // // * The // instance types that the model package supports for transform jobs and real-time // endpoints used for inference. // // * The input and output content formats that // the model package supports for inference. InferenceSpecification *types.InferenceSpecification // The name of the model package. The name must have 1 to 63 characters. Valid // characters are a-z, A-Z, 0-9, and - (hyphen). ModelPackageName *string // Whether to certify the model package for listing on AWS Marketplace. CertifyForMarketplace *bool }
type CreateModelPackageOutput ¶
type CreateModelPackageOutput struct { // The Amazon Resource Name (ARN) of the new model package. ModelPackageArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateMonitoringScheduleInput ¶
type CreateMonitoringScheduleInput struct { // The name of the monitoring schedule. The name must be unique within an AWS // Region within an AWS account. MonitoringScheduleName *string // The configuration object that specifies the monitoring schedule and defines the // monitoring job. MonitoringScheduleConfig *types.MonitoringScheduleConfig // (Optional) An array of key-value pairs. For more information, see Using Cost // Allocation Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag }
type CreateMonitoringScheduleOutput ¶
type CreateMonitoringScheduleOutput struct { // The Amazon Resource Name (ARN) of the monitoring schedule. MonitoringScheduleArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateNotebookInstanceInput ¶
type CreateNotebookInstanceInput struct { // A Git repository to associate with the notebook instance as its default code // repository. This can be either the name of a Git repository stored as a resource // in your account, or the URL of a Git repository in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. When you open a notebook instance, it opens in the // directory that contains this repository. For more information, see Associating // Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). DefaultCodeRepository *string // An array of up to three Git repositories to associate with the notebook // instance. These can be either the names of Git repositories stored as resources // in your account, or the URL of Git repositories in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. These repositories are cloned at the same level as the // default repository of your notebook instance. For more information, see // Associating Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). AdditionalCodeRepositories []*string // Sets whether Amazon SageMaker provides internet access to the notebook instance. // If you set this to Disabled this notebook instance will be able to access // resources only in your VPC, and will not be able to connect to Amazon SageMaker // training and endpoint services unless your configure a NAT Gateway in your VPC. // For more information, see Notebook Instances Are Internet-Enabled by Default // (https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access). // You can set the value of this parameter to Disabled only if you set a value for // the SubnetId parameter. DirectInternetAccess types.DirectInternetAccess // The ID of the subnet in a VPC to which you would like to have a connectivity // from your ML compute instance. SubnetId *string // A list of Elastic Inference (EI) instance types to associate with this notebook // instance. Currently, only one instance type can be associated with a notebook // instance. For more information, see Using Elastic Inference in Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html). AcceleratorTypes []types.NotebookInstanceAcceleratorType // The name of a lifecycle configuration to associate with the notebook instance. // For information about lifestyle configurations, see Step 2.1: (Optional) // Customize a Notebook Instance // (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html). LifecycleConfigName *string // Whether root access is enabled or disabled for users of the notebook instance. // The default value is Enabled. Lifecycle configurations need root access to be // able to set up a notebook instance. Because of this, lifecycle configurations // associated with a notebook instance always run with root access even if you // disable root access for users. RootAccess types.RootAccess // The type of ML compute instance to launch for the notebook instance. InstanceType types.InstanceType // The size, in GB, of the ML storage volume to attach to the notebook instance. // The default value is 5 GB. VolumeSizeInGB *int32 // A list of tags to associate with the notebook instance. You can add tags later // by using the CreateTags API. Tags []*types.Tag // The name of the new notebook instance. NotebookInstanceName *string // The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon // SageMaker uses to encrypt data on the storage volume attached to your notebook // instance. The KMS key you provide must be enabled. For information, see Enabling // and Disabling Keys // (https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html) in // the AWS Key Management Service Developer Guide. KmsKeyId *string // When you send any requests to AWS resources from the notebook instance, Amazon // SageMaker assumes this role to perform tasks on your behalf. You must grant this // role necessary permissions so Amazon SageMaker can perform these tasks. The // policy must allow the Amazon SageMaker service principal // (sagemaker.amazonaws.com) permissions to assume this role. For more information, // see Amazon SageMaker Roles // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html). To be // able to pass this role to Amazon SageMaker, the caller of this API must have the // iam:PassRole permission. RoleArn *string // The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be // for the same VPC as specified in the subnet. SecurityGroupIds []*string }
type CreateNotebookInstanceLifecycleConfigInput ¶
type CreateNotebookInstanceLifecycleConfigInput struct { // A shell script that runs only once, when you create a notebook instance. The // shell script must be a base64-encoded string. OnCreate []*types.NotebookInstanceLifecycleHook // A shell script that runs every time you start a notebook instance, including // when you create the notebook instance. The shell script must be a base64-encoded // string. OnStart []*types.NotebookInstanceLifecycleHook // The name of the lifecycle configuration. NotebookInstanceLifecycleConfigName *string }
type CreateNotebookInstanceLifecycleConfigOutput ¶
type CreateNotebookInstanceLifecycleConfigOutput struct { // The Amazon Resource Name (ARN) of the lifecycle configuration. NotebookInstanceLifecycleConfigArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateNotebookInstanceOutput ¶
type CreateNotebookInstanceOutput struct { // The Amazon Resource Name (ARN) of the notebook instance. NotebookInstanceArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreatePresignedDomainUrlInput ¶
type CreatePresignedDomainUrlInput struct { // The name of the UserProfile to sign-in as. UserProfileName *string // The domain ID. DomainId *string // The session expiration duration in seconds. SessionExpirationDurationInSeconds *int32 }
type CreatePresignedDomainUrlOutput ¶
type CreatePresignedDomainUrlOutput struct { // The presigned URL. AuthorizedUrl *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreatePresignedNotebookInstanceUrlInput ¶
type CreatePresignedNotebookInstanceUrlInput struct { // The name of the notebook instance. NotebookInstanceName *string // The duration of the session, in seconds. The default is 12 hours. SessionExpirationDurationInSeconds *int32 }
type CreatePresignedNotebookInstanceUrlOutput ¶
type CreatePresignedNotebookInstanceUrlOutput struct { // A JSON object that contains the URL string. AuthorizedUrl *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateProcessingJobInput ¶
type CreateProcessingJobInput struct { // The name of the processing job. The name must be unique within an AWS Region in // the AWS account. ProcessingJobName *string // Configures the processing job to run a specified Docker container image. AppSpecification *types.AppSpecification // Sets the environment variables in the Docker container. Environment map[string]*string // Output configuration for the processing job. ProcessingOutputConfig *types.ProcessingOutputConfig // Identifies the resources, ML compute instances, and ML storage volumes to deploy // for a processing job. In distributed training, you specify more than one // instance. ProcessingResources *types.ProcessingResources // The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume // to perform tasks on your behalf. RoleArn *string // (Optional) An array of key-value pairs. For more information, see Using Cost // Allocation Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // For each input, data is downloaded from S3 into the processing container before // the processing job begins running if "S3InputMode" is set to File. ProcessingInputs []*types.ProcessingInput // The time limit for how long the processing job is allowed to run. StoppingCondition *types.ProcessingStoppingCondition // Networking options for a processing job. NetworkConfig *types.NetworkConfig // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *types.ExperimentConfig }
type CreateProcessingJobOutput ¶
type CreateProcessingJobOutput struct { // The Amazon Resource Name (ARN) of the processing job. ProcessingJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateTrainingJobInput ¶
type CreateTrainingJobInput struct { // To encrypt all communications between ML compute instances in distributed // training, choose True. Encryption provides greater security for distributed // training, but training might take longer. How long it takes depends on the // amount of communication between compute instances, especially if you use a deep // learning algorithm in distributed training. For more information, see Protect // Communications Between ML Compute Instances in a Distributed Training Job // (https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html). EnableInterContainerTrafficEncryption *bool // Algorithm-specific parameters that influence the quality of the model. You set // hyperparameters before you start the learning process. For a list of // hyperparameters for each training algorithm provided by Amazon SageMaker, see // Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). You can // specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value // pair. Each key and value is limited to 256 characters, as specified by the // Length Constraint. HyperParameters map[string]*string // An array of key-value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. </p> Tags []*types.Tag // Configuration information for debugging rules. DebugRuleConfigurations []*types.DebugRuleConfiguration // Configuration of storage locations for TensorBoard output. TensorBoardOutputConfig *types.TensorBoardOutputConfig // The registry path of the Docker image that contains the training algorithm and // algorithm-specific metadata, including the input mode. For more information // about algorithms provided by Amazon SageMaker, see Algorithms // (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). For information // about providing your own algorithms, see Using Your Own Algorithms with Amazon // SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html). AlgorithmSpecification *types.AlgorithmSpecification // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *types.ExperimentConfig // An array of Channel objects. Each channel is a named input source. // InputDataConfig // describes the input data and its location. </p> // <p>Algorithms can accept input data from one or more channels. For example, an // algorithm might have two channels of input data, <code>training_data</code> and // <code>validation_data</code>. The configuration for each channel provides the // S3, EFS, or FSx location where the input data is stored. It also provides // information about the stored data: the MIME type, compression method, and // whether the data is wrapped in RecordIO format. </p> <p>Depending on the input // mode that the algorithm supports, Amazon SageMaker either copies input data // files from an S3 bucket to a local directory in the Docker container, or makes // it available as input streams. For example, if you specify an EFS location, // input data files will be made available as input streams. They do not need to be // downloaded.</p> InputDataConfig []*types.Channel // Configuration information for the debug hook parameters, collection // configuration, and storage paths. DebugHookConfig *types.DebugHookConfig // The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume // to perform tasks on your behalf. During model training, Amazon SageMaker needs // your permission to read input data from an S3 bucket, download a Docker image // that contains training code, write model artifacts to an S3 bucket, write logs // to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant // permissions for all of these tasks to an IAM role. For more information, see // Amazon SageMaker Roles // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html). To be // able to pass this role to Amazon SageMaker, the caller of this API must have the // iam:PassRole permission. RoleArn *string // To train models using managed spot training, choose True. Managed spot training // provides a fully managed and scalable infrastructure for training machine // learning models. this option is useful when training jobs can be interrupted and // when there is flexibility when the training job is run. The complete and // intermediate results of jobs are stored in an Amazon S3 bucket, and can be used // as a starting point to train models incrementally. Amazon SageMaker provides // metrics and logs in CloudWatch. They can be used to see when managed spot // training jobs are running, interrupted, resumed, or completed. EnableManagedSpotTraining *bool // Isolates the training container. No inbound or outbound network calls can be // made, except for calls between peers within a training cluster for distributed // training. If you enable network isolation for training jobs that are configured // to use a VPC, Amazon SageMaker downloads and uploads customer data and model // artifacts through the specified VPC, but the training container does not have // network access. EnableNetworkIsolation *bool // Specifies a limit to how long a model training job can run. When the job reaches // the time limit, Amazon SageMaker ends the training job. Use this API to cap // model training costs. To stop a job, Amazon SageMaker sends the algorithm the // SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use // this 120-second window to save the model artifacts, so the results of training // are not lost. StoppingCondition *types.StoppingCondition // The resources, including the ML compute instances and ML storage volumes, to use // for model training. ML storage volumes store model artifacts and incremental // states. Training algorithms might also use ML storage volumes for scratch space. // If you want Amazon SageMaker to use the ML storage volume to store the training // data, choose File as the TrainingInputMode in the algorithm specification. For // distributed training algorithms, specify an instance count greater than 1. ResourceConfig *types.ResourceConfig // Contains information about the output location for managed spot training // checkpoint data. CheckpointConfig *types.CheckpointConfig // Specifies the path to the S3 location where you want to store model artifacts. // Amazon SageMaker creates subfolders for the artifacts. OutputDataConfig *types.OutputDataConfig // A VpcConfig () object that specifies the VPC that you want your training job to // connect to. Control access to and from your training container by configuring // the VPC. For more information, see Protect Training Jobs by Using an Amazon // Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html). VpcConfig *types.VpcConfig // The name of the training job. The name must be unique within an AWS Region in an // AWS account. TrainingJobName *string }
type CreateTrainingJobOutput ¶
type CreateTrainingJobOutput struct { // The Amazon Resource Name (ARN) of the training job. TrainingJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateTransformJobInput ¶
type CreateTransformJobInput struct { // The name of the model that you want to use for the transform job. ModelName must // be the name of an existing Amazon SageMaker model within an AWS Region in an AWS // account. ModelName *string // Describes the results of the transform job. TransformOutput *types.TransformOutput // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *types.ExperimentConfig // The name of the transform job. The name must be unique within an AWS Region in // an AWS account. TransformJobName *string // The maximum allowed size of the payload, in MB. A payload is the data portion of // a record (without metadata). The value in MaxPayloadInMB must be greater than, // or equal to, the size of a single record. To estimate the size of a record in // MB, divide the size of your dataset by the number of records. To ensure that the // records fit within the maximum payload size, we recommend using a slightly // larger value. The default value is 6 MB. For cases where the payload might be // arbitrarily large and is transmitted using HTTP chunked encoding, set the value // to 0. This feature works only in supported algorithms. Currently, Amazon // SageMaker built-in algorithms do not support HTTP chunked encoding. MaxPayloadInMB *int32 // Specifies the number of records to include in a mini-batch for an HTTP inference // request. A record is a single unit of input data that inference can be made on. // For example, a single line in a CSV file is a record. To enable the batch // strategy, you must set the SplitType property to Line, RecordIO, or TFRecord. To // use only one record when making an HTTP invocation request to a container, set // BatchStrategy to SingleRecord and SplitType to Line. To fit as many records in a // mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to // MultiRecord and SplitType to Line. BatchStrategy types.BatchStrategy // (Optional) An array of key-value pairs. For more information, see Using Cost // Allocation Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // Describes the resources, including ML instance types and ML instance count, to // use for the transform job. TransformResources *types.TransformResources // The data structure used to specify the data to be used for inference in a batch // transform job and to associate the data that is relevant to the prediction // results in the output. The input filter provided allows you to exclude input // data that is not needed for inference in a batch transform job. The output // filter provided allows you to include input data relevant to interpreting the // predictions in the output from the job. For more information, see Associate // Prediction Results with their Corresponding Input Records // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html). DataProcessing *types.DataProcessing // The environment variables to set in the Docker container. We support up to 16 // key and values entries in the map. Environment map[string]*string // Configures the timeout and maximum number of retries for processing a transform // job invocation. ModelClientConfig *types.ModelClientConfig // Describes the input source and the way the transform job consumes it. TransformInput *types.TransformInput // The maximum number of parallel requests that can be sent to each instance in a // transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon // SageMaker checks the optional execution-parameters to determine the settings for // your chosen algorithm. If the execution-parameters endpoint is not enabled, the // default value is 1. For more information on execution-parameters, see How // Containers Serve Requests // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests). // For built-in algorithms, you don't need to set a value for // MaxConcurrentTransforms. MaxConcurrentTransforms *int32 }
type CreateTransformJobOutput ¶
type CreateTransformJobOutput struct { // The Amazon Resource Name (ARN) of the transform job. TransformJobArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateTrialComponentInput ¶
type CreateTrialComponentInput struct { // The hyperparameters for the component. Parameters map[string]*types.TrialComponentParameterValue // The status of the component. States include: // // * InProgress // // * // Completed // // * Failed Status *types.TrialComponentStatus // When the component ended. EndTime *time.Time // The name of the component. The name must be unique in your AWS account and is // not case-sensitive. TrialComponentName *string // A list of tags to associate with the component. You can use Search () API to // search on the tags. Tags []*types.Tag // The output artifacts for the component. Examples of output artifacts are // metrics, snapshots, logs, and images. OutputArtifacts map[string]*types.TrialComponentArtifact // The name of the component as displayed. The name doesn't need to be unique. If // DisplayName isn't specified, TrialComponentName is displayed. DisplayName *string // When the component started. StartTime *time.Time // The input artifacts for the component. Examples of input artifacts are datasets, // algorithms, hyperparameters, source code, and instance types. InputArtifacts map[string]*types.TrialComponentArtifact }
type CreateTrialComponentOutput ¶
type CreateTrialComponentOutput struct { // The Amazon Resource Name (ARN) of the trial component. TrialComponentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateTrialInput ¶
type CreateTrialInput struct { // The name of the trial as displayed. The name doesn't need to be unique. If // DisplayName isn't specified, TrialName is displayed. DisplayName *string // The name of the experiment to associate the trial with. ExperimentName *string // The name of the trial. The name must be unique in your AWS account and is not // case-sensitive. TrialName *string // A list of tags to associate with the trial. You can use Search () API to search // on the tags. Tags []*types.Tag }
type CreateTrialOutput ¶
type CreateTrialOutput struct { // The Amazon Resource Name (ARN) of the trial. TrialArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateUserProfileInput ¶
type CreateUserProfileInput struct { // The username of the associated AWS Single Sign-On User for this UserProfile. If // the Domain's AuthMode is SSO, this field is required, and must match a valid // username of a user in your directory. If the Domain's AuthMode is not SSO, this // field cannot be specified. SingleSignOnUserValue *string // A collection of settings. UserSettings *types.UserSettings // The ID of the associated Domain. DomainId *string // A specifier for the type of value specified in SingleSignOnUserValue. Currently, // the only supported value is "UserName". If the Domain's AuthMode is SSO, this // field is required. If the Domain's AuthMode is not SSO, this field cannot be // specified. SingleSignOnUserIdentifier *string // A name for the UserProfile. UserProfileName *string // Each tag consists of a key and an optional value. Tag keys must be unique per // resource. Tags []*types.Tag }
type CreateUserProfileOutput ¶
type CreateUserProfileOutput struct { // The user profile Amazon Resource Name (ARN). UserProfileArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateWorkforceInput ¶
type CreateWorkforceInput struct { // An array of key-value pairs that contain metadata to help you categorize and // organize our workforce. Each tag consists of a key and a value, both of which // you define. Tags []*types.Tag // Use this parameter to configure a private workforce using your own OIDC Identity // Provider. Do not use CognitoConfig if you specify values for OidcConfig. OidcConfig *types.OidcConfig // Use this parameter to configure an Amazon Cognito private workforce. A single // Cognito workforce is created using and corresponds to a single Amazon Cognito // user pool // (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html). // <p>Do not use <code>OidcConfig</code> if you specify values for // <code>CognitoConfig</code>.</p> CognitoConfig *types.CognitoConfig // A list of IP address ranges (CIDRs // (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)). Used to // create an allow list of IP addresses for a private workforce. For more // information, see . SourceIpConfig *types.SourceIpConfig // The name of the private workforce. WorkforceName *string }
type CreateWorkforceOutput ¶
type CreateWorkforceOutput struct { // The Amazon Resource Name (ARN) of the workforce. WorkforceArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type CreateWorkteamInput ¶
type CreateWorkteamInput struct { // Configures notification of workers regarding available or expiring work items. NotificationConfiguration *types.NotificationConfiguration // The name of the work team. Use this name to identify the work team. WorkteamName *string // A description of the work team. Description *string // A list of MemberDefinition objects that contains objects that identify the // Amazon Cognito user pool that makes up the work team. For more information, see // Amazon Cognito User Pools // (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html). // All of the CognitoMemberDefinition objects that make up the member definition // must have the same ClientId and UserPool values. MemberDefinitions []*types.MemberDefinition // The name of the workforce. WorkforceName *string // An array of key-value pairs. For more information, see Resource Tag // (https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-resource-tags.html) // and Using Cost Allocation Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag }
type CreateWorkteamOutput ¶
type CreateWorkteamOutput struct { // The Amazon Resource Name (ARN) of the work team. You can use this ARN to // identify the work team. WorkteamArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteAlgorithmInput ¶
type DeleteAlgorithmInput struct { // The name of the algorithm to delete. AlgorithmName *string }
type DeleteAlgorithmOutput ¶
type DeleteAlgorithmOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteAppInput ¶
type DeleteAppInput struct { // The type of app. AppType types.AppType // The user profile name. UserProfileName *string // The name of the app. AppName *string // The domain ID. DomainId *string }
type DeleteAppOutput ¶
type DeleteAppOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteCodeRepositoryInput ¶
type DeleteCodeRepositoryInput struct { // The name of the Git repository to delete. CodeRepositoryName *string }
type DeleteCodeRepositoryOutput ¶
type DeleteCodeRepositoryOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteDomainInput ¶
type DeleteDomainInput struct { // The retention policy for this domain, which specifies whether resources will be // retained after the Domain is deleted. By default, all resources are retained // (not automatically deleted). RetentionPolicy *types.RetentionPolicy // The domain ID. DomainId *string }
type DeleteDomainOutput ¶
type DeleteDomainOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteEndpointConfigInput ¶
type DeleteEndpointConfigInput struct { // The name of the endpoint configuration that you want to delete. EndpointConfigName *string }
type DeleteEndpointConfigOutput ¶
type DeleteEndpointConfigOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteEndpointInput ¶
type DeleteEndpointInput struct { // The name of the endpoint that you want to delete. EndpointName *string }
type DeleteEndpointOutput ¶
type DeleteEndpointOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteExperimentInput ¶
type DeleteExperimentInput struct { // The name of the experiment to delete. ExperimentName *string }
type DeleteExperimentOutput ¶
type DeleteExperimentOutput struct { // The Amazon Resource Name (ARN) of the experiment that is being deleted. ExperimentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteFlowDefinitionInput ¶
type DeleteFlowDefinitionInput struct { // The name of the flow definition you are deleting. FlowDefinitionName *string }
type DeleteFlowDefinitionOutput ¶
type DeleteFlowDefinitionOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteHumanTaskUiInput ¶
type DeleteHumanTaskUiInput struct { // The name of the human task user interface (work task template) you want to // delete. HumanTaskUiName *string }
type DeleteHumanTaskUiOutput ¶
type DeleteHumanTaskUiOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteModelInput ¶
type DeleteModelInput struct { // The name of the model to delete. ModelName *string }
type DeleteModelOutput ¶
type DeleteModelOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteModelPackageInput ¶
type DeleteModelPackageInput struct { // The name of the model package. The name must have 1 to 63 characters. Valid // characters are a-z, A-Z, 0-9, and - (hyphen). ModelPackageName *string }
type DeleteModelPackageOutput ¶
type DeleteModelPackageOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteMonitoringScheduleInput ¶
type DeleteMonitoringScheduleInput struct { // The name of the monitoring schedule to delete. MonitoringScheduleName *string }
type DeleteMonitoringScheduleOutput ¶
type DeleteMonitoringScheduleOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteNotebookInstanceInput ¶
type DeleteNotebookInstanceInput struct { // The name of the Amazon SageMaker notebook instance to delete. NotebookInstanceName *string }
type DeleteNotebookInstanceLifecycleConfigInput ¶
type DeleteNotebookInstanceLifecycleConfigInput struct { // The name of the lifecycle configuration to delete. NotebookInstanceLifecycleConfigName *string }
type DeleteNotebookInstanceLifecycleConfigOutput ¶
type DeleteNotebookInstanceLifecycleConfigOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteNotebookInstanceOutput ¶
type DeleteNotebookInstanceOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteTagsInput ¶
type DeleteTagsInput struct { // An array or one or more tag keys to delete. TagKeys []*string // The Amazon Resource Name (ARN) of the resource whose tags you want to delete. ResourceArn *string }
type DeleteTagsOutput ¶
type DeleteTagsOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteTrialComponentInput ¶
type DeleteTrialComponentInput struct { // The name of the component to delete. TrialComponentName *string }
type DeleteTrialComponentOutput ¶
type DeleteTrialComponentOutput struct { // The Amazon Resource Name (ARN) of the component is being deleted. TrialComponentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteTrialInput ¶
type DeleteTrialInput struct { // The name of the trial to delete. TrialName *string }
type DeleteTrialOutput ¶
type DeleteTrialOutput struct { // The Amazon Resource Name (ARN) of the trial that is being deleted. TrialArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteUserProfileInput ¶
type DeleteUserProfileInput struct { // The user profile name. UserProfileName *string // The domain ID. DomainId *string }
type DeleteUserProfileOutput ¶
type DeleteUserProfileOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteWorkforceInput ¶
type DeleteWorkforceInput struct { // The name of the workforce. WorkforceName *string }
type DeleteWorkforceOutput ¶
type DeleteWorkforceOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DeleteWorkteamInput ¶
type DeleteWorkteamInput struct { // The name of the work team to delete. WorkteamName *string }
type DeleteWorkteamOutput ¶
type DeleteWorkteamOutput struct { // Returns true if the work team was successfully deleted; otherwise, returns // false. Success *bool // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeAlgorithmInput ¶
type DescribeAlgorithmInput struct { // The name of the algorithm to describe. AlgorithmName *string }
type DescribeAlgorithmOutput ¶
type DescribeAlgorithmOutput struct { // Whether the algorithm is certified to be listed in AWS Marketplace. CertifyForMarketplace *bool // Details about training jobs run by this algorithm. TrainingSpecification *types.TrainingSpecification // The product identifier of the algorithm. ProductId *string // Details about inference jobs that the algorithm runs. InferenceSpecification *types.InferenceSpecification // The current status of the algorithm. AlgorithmStatus types.AlgorithmStatus // Details about configurations for one or more training jobs that Amazon SageMaker // runs to test the algorithm. ValidationSpecification *types.AlgorithmValidationSpecification // Details about the current status of the algorithm. AlgorithmStatusDetails *types.AlgorithmStatusDetails // A brief summary about the algorithm. AlgorithmDescription *string // A timestamp specifying when the algorithm was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the algorithm. AlgorithmArn *string // The name of the algorithm being described. AlgorithmName *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeAppInput ¶
type DescribeAppInput struct { // The type of app. AppType types.AppType // The name of the app. AppName *string // The user profile name. UserProfileName *string // The domain ID. DomainId *string }
type DescribeAppOutput ¶
type DescribeAppOutput struct { // The status. Status types.AppStatus // The user profile name. UserProfileName *string // The app's Amazon Resource Name (ARN). AppArn *string // The failure reason. FailureReason *string // The domain ID. DomainId *string // The instance type and the Amazon Resource Name (ARN) of the SageMaker image // created on the instance. ResourceSpec *types.ResourceSpec // The name of the app. AppName *string // The timestamp of the last health check. LastHealthCheckTimestamp *time.Time // The timestamp of the last user's activity. LastUserActivityTimestamp *time.Time // The creation time. CreationTime *time.Time // The type of app. AppType types.AppType // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeAutoMLJobInput ¶
type DescribeAutoMLJobInput struct { // Request information about a job using that job's unique name. AutoMLJobName *string }
type DescribeAutoMLJobOutput ¶
type DescribeAutoMLJobOutput struct { // Returns the job's creation time. CreationTime *time.Time // Returns the job's last modified time. LastModifiedTime *time.Time // Returns the job's BestCandidate. BestCandidate *types.AutoMLCandidate // Returns the job's end time. EndTime *time.Time // Returns the name of a job. AutoMLJobName *string // Returns the job's ARN. AutoMLJobArn *string // Returns the job's output from GenerateCandidateDefinitionsOnly. GenerateCandidateDefinitionsOnly *bool // Returns the job's FailureReason. FailureReason *string // Returns the job's objective. AutoMLJobObjective *types.AutoMLJobObjective // Returns information on the job's artifacts found in AutoMLJobArtifacts. AutoMLJobArtifacts *types.AutoMLJobArtifacts // Returns the job's AutoMLJobSecondaryStatus. AutoMLJobSecondaryStatus types.AutoMLJobSecondaryStatus // This contains ProblemType, AutoMLJobObjective and CompletionCriteria. They're // auto-inferred values, if not provided by you. If you do provide them, then // they'll be the same as provided. ResolvedAttributes *types.ResolvedAttributes // Returns the job's output data config. OutputDataConfig *types.AutoMLOutputDataConfig // Returns the job's problem type. ProblemType types.ProblemType // Returns the job's AutoMLJobStatus. AutoMLJobStatus types.AutoMLJobStatus // Returns the job's config. AutoMLJobConfig *types.AutoMLJobConfig // The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) // role that has read permission to the input data location and write permission to // the output data location in Amazon S3. RoleArn *string // Returns the job's input data config. InputDataConfig []*types.AutoMLChannel // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeCodeRepositoryInput ¶
type DescribeCodeRepositoryInput struct { // The name of the Git repository to describe. CodeRepositoryName *string }
type DescribeCodeRepositoryOutput ¶
type DescribeCodeRepositoryOutput struct { // The Amazon Resource Name (ARN) of the Git repository. CodeRepositoryArn *string // The name of the Git repository. CodeRepositoryName *string // Configuration details about the repository, including the URL where the // repository is located, the default branch, and the Amazon Resource Name (ARN) of // the AWS Secrets Manager secret that contains the credentials used to access the // repository. GitConfig *types.GitConfig // The date and time that the repository was created. CreationTime *time.Time // The date and time that the repository was last changed. LastModifiedTime *time.Time // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeCompilationJobInput ¶
type DescribeCompilationJobInput struct { // The name of the model compilation job that you want information about. CompilationJobName *string }
type DescribeCompilationJobOutput ¶
type DescribeCompilationJobOutput struct { // Information about the location in Amazon S3 that has been configured for storing // the model artifacts used in the compilation job. ModelArtifacts *types.ModelArtifacts // The Amazon Resource Name (ARN) of the model compilation job. RoleArn *string // The time when the model compilation job started the CompilationJob instances. // You are billed for the time between this timestamp and the timestamp in the // DescribeCompilationJobResponse$CompilationEndTime () field. In Amazon CloudWatch // Logs, the start time might be later than this time. That's because it takes time // to download the compilation job, which depends on the size of the compilation // job container. CompilationStartTime *time.Time // The name of the model compilation job. CompilationJobName *string // The time that the model compilation job was created. CreationTime *time.Time // The time that the status of the model compilation job was last modified. LastModifiedTime *time.Time // If a model compilation job failed, the reason it failed. FailureReason *string // Information about the location in Amazon S3 of the input model artifacts, the // name and shape of the expected data inputs, and the framework in which the model // was trained. InputConfig *types.InputConfig // Information about the output location for the compiled model and the target // device that the model runs on. OutputConfig *types.OutputConfig // The status of the model compilation job. CompilationJobStatus types.CompilationJobStatus // Specifies a limit to how long a model compilation job can run. When the job // reaches the time limit, Amazon SageMaker ends the compilation job. Use this API // to cap model training costs. StoppingCondition *types.StoppingCondition // The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to // perform the model compilation job. CompilationJobArn *string // The time when the model compilation job on a compilation job instance ended. For // a successful or stopped job, this is when the job's model artifacts have // finished uploading. For a failed job, this is when Amazon SageMaker detected // that the job failed. CompilationEndTime *time.Time // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeDomainInput ¶
type DescribeDomainInput struct { // The domain ID. DomainId *string }
type DescribeDomainOutput ¶
type DescribeDomainOutput struct { // Settings which are applied to all UserProfile in this domain, if settings are // not explicitly specified in a given UserProfile. DefaultUserSettings *types.UserSettings // The AWS Key Management Service encryption key ID. HomeEfsFileSystemKmsKeyId *string // The domain's URL. Url *string // Security setting to limit to a set of subnets. SubnetIds []*string // The domain's Amazon Resource Name (ARN). DomainArn *string // The ID of the Amazon Virtual Private Cloud. VpcId *string // The domain name. DomainName *string // The domain's authentication mode. AuthMode types.AuthMode // The creation time. CreationTime *time.Time // The last modified time. LastModifiedTime *time.Time // The SSO managed application instance ID. SingleSignOnManagedApplicationInstanceId *string // The domain ID. DomainId *string // The ID of the Amazon Elastic File System (EFS) managed by this Domain. HomeEfsFileSystemId *string // The status. Status types.DomainStatus // The failure reason. FailureReason *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeEndpointConfigInput ¶
type DescribeEndpointConfigInput struct { // The name of the endpoint configuration. EndpointConfigName *string }
type DescribeEndpointConfigOutput ¶
type DescribeEndpointConfigOutput struct { // An array of ProductionVariant objects, one for each model that you want to host // at this endpoint. ProductionVariants []*types.ProductionVariant // DataCaptureConfig *types.DataCaptureConfig // A timestamp that shows when the endpoint configuration was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the endpoint configuration. EndpointConfigArn *string // AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML // storage volume attached to the instance. KmsKeyId *string // Name of the Amazon SageMaker endpoint configuration. EndpointConfigName *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeEndpointInput ¶
type DescribeEndpointInput struct { // The name of the endpoint. EndpointName *string }
type DescribeEndpointOutput ¶
type DescribeEndpointOutput struct { // The status of the endpoint. // // * OutOfService: Endpoint is not available to // take incoming requests. // // * Creating: CreateEndpoint () is executing. // // * // Updating: UpdateEndpoint () or UpdateEndpointWeightsAndCapacities () is // executing. // // * SystemUpdating: Endpoint is undergoing maintenance and cannot // be updated or deleted or re-scaled until it has completed. This maintenance // operation does not change any customer-specified values such as VPC config, KMS // encryption, model, instance type, or instance count. // // * RollingBack: // Endpoint fails to scale up or down or change its variant weight and is in the // process of rolling back to its previous configuration. Once the rollback // completes, endpoint returns to an InService status. This transitional status // only applies to an endpoint that has autoscaling enabled and is undergoing // variant weight or capacity changes as part of an // UpdateEndpointWeightsAndCapacities () call or when the // UpdateEndpointWeightsAndCapacities () operation is called explicitly. // // * // InService: Endpoint is available to process incoming requests. // // * Deleting: // DeleteEndpoint () is executing. // // * Failed: Endpoint could not be created, // updated, or re-scaled. Use DescribeEndpointOutput$FailureReason () for // information about the failure. DeleteEndpoint () is the only operation that can // be performed on a failed endpoint. EndpointStatus types.EndpointStatus // An array of ProductionVariantSummary () objects, one for each model hosted // behind this endpoint. ProductionVariants []*types.ProductionVariantSummary // The name of the endpoint configuration associated with this endpoint. EndpointConfigName *string // Name of the endpoint. EndpointName *string // If the status of the endpoint is Failed, the reason why it failed. FailureReason *string // A timestamp that shows when the endpoint was created. CreationTime *time.Time // A timestamp that shows when the endpoint was last modified. LastModifiedTime *time.Time // The Amazon Resource Name (ARN) of the endpoint. EndpointArn *string // DataCaptureConfig *types.DataCaptureConfigSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeExperimentInput ¶
type DescribeExperimentInput struct { // The name of the experiment to describe. ExperimentName *string }
type DescribeExperimentOutput ¶
type DescribeExperimentOutput struct { // When the experiment was created. CreationTime *time.Time // When the experiment was last modified. LastModifiedTime *time.Time // The name of the experiment as displayed. If DisplayName isn't specified, // ExperimentName is displayed. DisplayName *string // Who last modified the experiment. LastModifiedBy *types.UserContext // The ARN of the source and, optionally, the type. Source *types.ExperimentSource // Who created the experiment. CreatedBy *types.UserContext // The description of the experiment. Description *string // The name of the experiment. ExperimentName *string // The Amazon Resource Name (ARN) of the experiment. ExperimentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeFlowDefinitionInput ¶
type DescribeFlowDefinitionInput struct { // The name of the flow definition. FlowDefinitionName *string }
type DescribeFlowDefinitionOutput ¶
type DescribeFlowDefinitionOutput struct { // The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) // execution role for the flow definition. RoleArn *string // The status of the flow definition. Valid values are listed below. FlowDefinitionStatus types.FlowDefinitionStatus // The timestamp when the flow definition was created. CreationTime *time.Time // An object containing information about the output file. OutputConfig *types.FlowDefinitionOutputConfig // An object containing information about what triggers a human review workflow. HumanLoopActivationConfig *types.HumanLoopActivationConfig // Container for configuring the source of human task requests. Used to specify if // Amazon Rekognition or Amazon Textract is used as an integration source. HumanLoopRequestSource *types.HumanLoopRequestSource // An object containing information about who works on the task, the workforce task // price, and other task details. HumanLoopConfig *types.HumanLoopConfig // The reason your flow definition failed. FailureReason *string // The Amazon Resource Name (ARN) of the flow defintion. FlowDefinitionArn *string // The Amazon Resource Name (ARN) of the flow definition. FlowDefinitionName *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeHumanTaskUiInput ¶
type DescribeHumanTaskUiInput struct { // The name of the human task user interface (worker task template) you want // information about. HumanTaskUiName *string }
type DescribeHumanTaskUiOutput ¶
type DescribeHumanTaskUiOutput struct { // The name of the human task user interface (worker task template). HumanTaskUiName *string // The Amazon Resource Name (ARN) of the human task user interface (worker task // template). HumanTaskUiArn *string // The timestamp when the human task user interface was created. CreationTime *time.Time // Container for user interface template information. UiTemplate *types.UiTemplateInfo // The status of the human task user interface (worker task template). Valid values // are listed below. HumanTaskUiStatus types.HumanTaskUiStatus // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeHyperParameterTuningJobInput ¶
type DescribeHyperParameterTuningJobInput struct { // The name of the tuning job. HyperParameterTuningJobName *string }
type DescribeHyperParameterTuningJobOutput ¶
type DescribeHyperParameterTuningJobOutput struct { // The HyperParameterTuningJobConfig () object that specifies the configuration of // the tuning job. HyperParameterTuningJobConfig *types.HyperParameterTuningJobConfig // If the hyperparameter tuning job is an warm start tuning job with a // WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary () // for the training job with the best objective metric value of all training jobs // launched by this tuning job and all parent jobs specified for the warm start // tuning job. OverallBestTrainingJob *types.HyperParameterTrainingJobSummary // The TrainingJobStatusCounters () object that specifies the number of training // jobs, categorized by status, that this tuning job launched. TrainingJobStatusCounters *types.TrainingJobStatusCounters // The date and time that the tuning job ended. HyperParameterTuningEndTime *time.Time // The HyperParameterTrainingJobDefinition () object that specifies the definition // of the training jobs that this tuning job launches. TrainingJobDefinition *types.HyperParameterTrainingJobDefinition // The configuration for starting the hyperparameter parameter tuning job using one // or more previous tuning jobs as a starting point. The results of previous tuning // jobs are used to inform which combinations of hyperparameters to search over in // the new tuning job. WarmStartConfig *types.HyperParameterTuningJobWarmStartConfig // The ObjectiveStatusCounters () object that specifies the number of training // jobs, categorized by the status of their final objective metric, that this // tuning job launched. ObjectiveStatusCounters *types.ObjectiveStatusCounters // The status of the tuning job: InProgress, Completed, Failed, Stopping, or // Stopped. HyperParameterTuningJobStatus types.HyperParameterTuningJobStatus // A list of the HyperParameterTrainingJobDefinition () objects launched for this // tuning job. TrainingJobDefinitions []*types.HyperParameterTrainingJobDefinition // The date and time that the tuning job started. CreationTime *time.Time // The date and time that the status of the tuning job was modified. LastModifiedTime *time.Time // The name of the tuning job. HyperParameterTuningJobName *string // A TrainingJobSummary () object that describes the training job that completed // with the best current HyperParameterTuningJobObjective (). BestTrainingJob *types.HyperParameterTrainingJobSummary // The Amazon Resource Name (ARN) of the tuning job. HyperParameterTuningJobArn *string // If the tuning job failed, the reason it failed. FailureReason *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeLabelingJobInput ¶
type DescribeLabelingJobInput struct { // The name of the labeling job to return information for. LabelingJobName *string }
type DescribeLabelingJobOutput ¶
type DescribeLabelingJobOutput struct { // The date and time that the labeling job was last updated. LastModifiedTime *time.Time // The date and time that the labeling job was created. CreationTime *time.Time // Input configuration information for the labeling job, such as the Amazon S3 // location of the data objects and the location of the manifest file that // describes the data objects. InputConfig *types.LabelingJobInputConfig // Configuration information required for human workers to complete a labeling // task. HumanTaskConfig *types.HumanTaskConfig // A set of conditions for stopping a labeling job. If any of the conditions are // met, the job is automatically stopped. StoppingConditions *types.LabelingJobStoppingConditions // Configuration information for automated data labeling. LabelingJobAlgorithmsConfig *types.LabelingJobAlgorithmsConfig // The processing status of the labeling job. LabelingJobStatus types.LabelingJobStatus // The Amazon Resource Name (ARN) of the labeling job. LabelingJobArn *string // If the job failed, the reason that it failed. FailureReason *string // The name assigned to the labeling job when it was created. LabelingJobName *string // The S3 location of the JSON file that defines the categories used to label data // objects. Please note the following label-category limits: // // * Semantic // segmentation labeling jobs using automated labeling: 20 labels // // * Box // bounding labeling jobs (all): 10 labels // // The file is a JSON structure in the // following format: { // "document-version": "2018-11-28" // // "labels": [ // // // { // // "label": "label 1" // // }, // // { // // "label": "label 2" // // }, // // // ... // // { // // "label": "label n" // // } // // ] // // } LabelCategoryConfigS3Uri *string // An array of key/value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*types.Tag // The location of the output produced by the labeling job. LabelingJobOutput *types.LabelingJobOutput // The attribute used as the label in the output manifest file. LabelAttributeName *string // A unique identifier for work done as part of a labeling job. JobReferenceCode *string // Provides a breakdown of the number of data objects labeled by humans, the number // of objects labeled by machine, the number of objects than couldn't be labeled, // and the total number of objects labeled. LabelCounters *types.LabelCounters // The location of the job's output data and the AWS Key Management Service key ID // for the key used to encrypt the output data, if any. OutputConfig *types.LabelingJobOutputConfig // The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on // your behalf during data labeling. RoleArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeModelInput ¶
type DescribeModelInput struct { // The name of the model. ModelName *string }
type DescribeModelOutput ¶
type DescribeModelOutput struct { // A VpcConfig () object that specifies the VPC that this model has access to. For // more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html) VpcConfig *types.VpcConfig // The Amazon Resource Name (ARN) of the model. ModelArn *string // The Amazon Resource Name (ARN) of the IAM role that you specified for the model. ExecutionRoleArn *string // The containers in the inference pipeline. Containers []*types.ContainerDefinition // Name of the Amazon SageMaker model. ModelName *string // The location of the primary inference code, associated artifacts, and custom // environment map that the inference code uses when it is deployed in production. PrimaryContainer *types.ContainerDefinition // A timestamp that shows when the model was created. CreationTime *time.Time // If True, no inbound or outbound network calls can be made to or from the model // container. EnableNetworkIsolation *bool // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeModelPackageInput ¶
type DescribeModelPackageInput struct { // The name of the model package to describe. ModelPackageName *string }
type DescribeModelPackageOutput ¶
type DescribeModelPackageOutput struct { // The name of the model package being described. ModelPackageName *string // A timestamp specifying when the model package was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the model package. ModelPackageArn *string // Details about the algorithm that was used to create the model package. SourceAlgorithmSpecification *types.SourceAlgorithmSpecification // Details about the current status of the model package. ModelPackageStatusDetails *types.ModelPackageStatusDetails // Configurations for one or more transform jobs that Amazon SageMaker runs to test // the model package. ValidationSpecification *types.ModelPackageValidationSpecification // A brief summary of the model package. ModelPackageDescription *string // Whether the model package is certified for listing on AWS Marketplace. CertifyForMarketplace *bool // The current status of the model package. ModelPackageStatus types.ModelPackageStatus // Details about inference jobs that can be run with models based on this model // package. InferenceSpecification *types.InferenceSpecification // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeMonitoringScheduleInput ¶
type DescribeMonitoringScheduleInput struct { // Name of a previously created monitoring schedule. MonitoringScheduleName *string }
type DescribeMonitoringScheduleOutput ¶
type DescribeMonitoringScheduleOutput struct { // The status of an monitoring job. MonitoringScheduleStatus types.ScheduleStatus // The name of the endpoint for the monitoring job. EndpointName *string // Describes metadata on the last execution to run, if there was one. LastMonitoringExecutionSummary *types.MonitoringExecutionSummary // The configuration object that specifies the monitoring schedule and defines the // monitoring job. MonitoringScheduleConfig *types.MonitoringScheduleConfig // A string, up to one KB in size, that contains the reason a monitoring job // failed, if it failed. FailureReason *string // The time at which the monitoring job was created. CreationTime *time.Time // The time at which the monitoring job was last modified. LastModifiedTime *time.Time // Name of the monitoring schedule. MonitoringScheduleName *string // The Amazon Resource Name (ARN) of the monitoring schedule. MonitoringScheduleArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeNotebookInstanceInput ¶
type DescribeNotebookInstanceInput struct { // The name of the notebook instance that you want information about. NotebookInstanceName *string }
type DescribeNotebookInstanceLifecycleConfigInput ¶
type DescribeNotebookInstanceLifecycleConfigInput struct { // The name of the lifecycle configuration to describe. NotebookInstanceLifecycleConfigName *string }
type DescribeNotebookInstanceLifecycleConfigOutput ¶
type DescribeNotebookInstanceLifecycleConfigOutput struct { // The shell script that runs every time you start a notebook instance, including // when you create the notebook instance. OnStart []*types.NotebookInstanceLifecycleHook // A timestamp that tells when the lifecycle configuration was last modified. LastModifiedTime *time.Time // A timestamp that tells when the lifecycle configuration was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the lifecycle configuration. NotebookInstanceLifecycleConfigArn *string // The shell script that runs only once, when you create a notebook instance. OnCreate []*types.NotebookInstanceLifecycleHook // The name of the lifecycle configuration. NotebookInstanceLifecycleConfigName *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeNotebookInstanceOutput ¶
type DescribeNotebookInstanceOutput struct { // Whether root access is enabled or disabled for users of the notebook instance. // Lifecycle configurations need root access to be able to set up a notebook // instance. Because of this, lifecycle configurations associated with a notebook // instance always run with root access even if you disable root access for users. RootAccess types.RootAccess // The name of the Amazon SageMaker notebook instance. NotebookInstanceName *string // A timestamp. Use this parameter to return the time when the notebook instance // was created CreationTime *time.Time // A timestamp. Use this parameter to retrieve the time when the notebook instance // was last modified. LastModifiedTime *time.Time // The URL that you use to connect to the Jupyter notebook that is running in your // notebook instance. Url *string // The network interface IDs that Amazon SageMaker created at the time of creating // the instance. NetworkInterfaceId *string // A list of the Elastic Inference (EI) instance types associated with this // notebook instance. Currently only one EI instance type can be associated with a // notebook instance. For more information, see Using Elastic Inference in Amazon // SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html). AcceleratorTypes []types.NotebookInstanceAcceleratorType // The Amazon Resource Name (ARN) of the IAM role associated with the instance. RoleArn *string // The size, in GB, of the ML storage volume attached to the notebook instance. VolumeSizeInGB *int32 // Returns the name of a notebook instance lifecycle configuration. For information // about notebook instance lifestyle configurations, see Step 2.1: (Optional) // Customize a Notebook Instance // (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html) NotebookInstanceLifecycleConfigName *string // Describes whether Amazon SageMaker provides internet access to the notebook // instance. If this value is set to Disabled, the notebook instance does not have // internet access, and cannot connect to Amazon SageMaker training and endpoint // services. For more information, see Notebook Instances Are Internet-Enabled by // Default // (https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access). DirectInternetAccess types.DirectInternetAccess // The Amazon Resource Name (ARN) of the notebook instance. NotebookInstanceArn *string // The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the // ML storage volume attached to the instance. KmsKeyId *string // The ID of the VPC subnet. SubnetId *string // An array of up to three Git repositories associated with the notebook instance. // These can be either the names of Git repositories stored as resources in your // account, or the URL of Git repositories in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. These repositories are cloned at the same level as the // default repository of your notebook instance. For more information, see // Associating Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). AdditionalCodeRepositories []*string // The type of ML compute instance running on the notebook instance. InstanceType types.InstanceType // The IDs of the VPC security groups. SecurityGroups []*string // The Git repository associated with the notebook instance as its default code // repository. This can be either the name of a Git repository stored as a resource // in your account, or the URL of a Git repository in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. When you open a notebook instance, it opens in the // directory that contains this repository. For more information, see Associating // Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). DefaultCodeRepository *string // The status of the notebook instance. NotebookInstanceStatus types.NotebookInstanceStatus // If status is Failed, the reason it failed. FailureReason *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeProcessingJobInput ¶
type DescribeProcessingJobInput struct { // The name of the processing job. The name must be unique within an AWS Region in // the AWS account. ProcessingJobName *string }
type DescribeProcessingJobOutput ¶
type DescribeProcessingJobOutput struct { // The ARN of a monitoring schedule for an endpoint associated with this processing // job. MonitoringScheduleArn *string // The time at which the processing job started. ProcessingStartTime *time.Time // The configuration information used to create an experiment. ExperimentConfig *types.ExperimentConfig // The time limit for how long the processing job is allowed to run. StoppingCondition *types.ProcessingStoppingCondition // Identifies the resources, ML compute instances, and ML storage volumes to deploy // for a processing job. In distributed training, you specify more than one // instance. ProcessingResources *types.ProcessingResources // Networking options for a processing job. NetworkConfig *types.NetworkConfig // The ARN of an AutoML job associated with this processing job. AutoMLJobArn *string // A string, up to one KB in size, that contains the reason a processing job // failed, if it failed. FailureReason *string // The ARN of a training job associated with this processing job. TrainingJobArn *string // The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume // to perform tasks on your behalf. RoleArn *string // The time at which the processing job completed. ProcessingEndTime *time.Time // The inputs for a processing job. ProcessingInputs []*types.ProcessingInput // The name of the processing job. The name must be unique within an AWS Region in // the AWS account. ProcessingJobName *string // The Amazon Resource Name (ARN) of the processing job. ProcessingJobArn *string // An optional string, up to one KB in size, that contains metadata from the // processing container when the processing job exits. ExitMessage *string // Provides the status of a processing job. ProcessingJobStatus types.ProcessingJobStatus // Configures the processing job to run a specified container image. AppSpecification *types.AppSpecification // Output configuration for the processing job. ProcessingOutputConfig *types.ProcessingOutputConfig // The time at which the processing job was created. CreationTime *time.Time // The environment variables set in the Docker container. Environment map[string]*string // The time at which the processing job was last modified. LastModifiedTime *time.Time // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeSubscribedWorkteamInput ¶
type DescribeSubscribedWorkteamInput struct { // The Amazon Resource Name (ARN) of the subscribed work team to describe. WorkteamArn *string }
type DescribeSubscribedWorkteamOutput ¶
type DescribeSubscribedWorkteamOutput struct { // A Workteam instance that contains information about the work team. SubscribedWorkteam *types.SubscribedWorkteam // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeTrainingJobInput ¶
type DescribeTrainingJobInput struct { // The name of the training job. TrainingJobName *string }
type DescribeTrainingJobOutput ¶
type DescribeTrainingJobOutput struct { // Configuration of storage locations for TensorBoard output. TensorBoardOutputConfig *types.TensorBoardOutputConfig // If the training job failed, the reason it failed. FailureReason *string // The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job // that created the transform or training job. LabelingJobArn *string // If you want to allow inbound or outbound network calls, except for calls between // peers within a training cluster for distributed training, choose True. If you // enable network isolation for training jobs that are configured to use a VPC, // Amazon SageMaker downloads and uploads customer data and model artifacts through // the specified VPC, but the training container does not have network access. EnableNetworkIsolation *bool // Indicates the time when the training job ends on training instances. You are // billed for the time interval between the value of TrainingStartTime and this // time. For successful jobs and stopped jobs, this is the time after model // artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker // detects a job failure. TrainingEndTime *time.Time // Contains information about the output location for managed spot training // checkpoint data. CheckpointConfig *types.CheckpointConfig // A timestamp that indicates when the training job was created. CreationTime *time.Time // A timestamp that indicates when the status of the training job was last // modified. LastModifiedTime *time.Time // Resources, including ML compute instances and ML storage volumes, that are // configured for model training. ResourceConfig *types.ResourceConfig // A collection of MetricData objects that specify the names, values, and dates and // times that the training algorithm emitted to Amazon CloudWatch. FinalMetricDataList []*types.MetricData // Name of the model training job. TrainingJobName *string // Provides detailed information about the state of the training job. For detailed // information on the secondary status of the training job, see StatusMessage under // SecondaryStatusTransition (). Amazon SageMaker provides primary statuses and // secondary statuses that apply to each of them: InProgress // // * Starting - // Starting the training job. // // * Downloading - An optional stage for algorithms // that support File training input mode. It indicates that data is being // downloaded to the ML storage volumes. // // * Training - Training is in // progress. // // * Interrupted - The job stopped because the managed spot training // instances were interrupted. // // * Uploading - Training is complete and the // model artifacts are being uploaded to the S3 location. // // Completed // // * // Completed - The training job has completed. // // Failed // // * Failed - The training // job has failed. The reason for the failure is returned in the FailureReason // field of DescribeTrainingJobResponse. // // Stopped // // * MaxRuntimeExceeded - The // job stopped because it exceeded the maximum allowed runtime. // // * // MaxWaitTmeExceeded - The job stopped because it exceeded the maximum allowed // wait time. // // * Stopped - The training job has stopped. // // Stopping // // * // Stopping - Stopping the training job. // // <important> <p>Valid values for // <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no // longer support the following secondary statuses:</p> <ul> <li> <p> // <code>LaunchingMLInstances</code> </p> </li> <li> <p> // <code>PreparingTrainingStack</code> </p> </li> <li> <p> // <code>DownloadingTrainingImage</code> </p> </li> </ul> SecondaryStatus types.SecondaryStatus // An array of Channel objects that describes each data input channel. InputDataConfig []*types.Channel // The billable time in seconds. You can calculate the savings from using managed // spot training using the formula (1 - BillableTimeInSeconds / // TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and // TrainingTimeInSeconds is 500, the savings is 80%. BillableTimeInSeconds *int32 // The AWS Identity and Access Management (IAM) role configured for the training // job. RoleArn *string // Information about the Amazon S3 location that is configured for storing model // artifacts. ModelArtifacts *types.ModelArtifacts // Specifies a limit to how long a model training job can run. It also specifies // the maximum time to wait for a spot instance. When the job reaches the time // limit, Amazon SageMaker ends the training job. Use this API to cap model // training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM // signal, which delays job termination for 120 seconds. Algorithms can use this // 120-second window to save the model artifacts, so the results of training are // not lost. StoppingCondition *types.StoppingCondition // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *types.ExperimentConfig // The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if // the training job was launched by a hyperparameter tuning job. TuningJobArn *string // Configuration information for debugging rules. DebugRuleConfigurations []*types.DebugRuleConfiguration // The Amazon Resource Name (ARN) of an AutoML job. AutoMLJobArn *string // To encrypt all communications between ML compute instances in distributed // training, choose True. Encryption provides greater security for distributed // training, but training might take longer. How long it takes depends on the // amount of communication between compute instances, especially if you use a deep // learning algorithms in distributed training. EnableInterContainerTrafficEncryption *bool // A VpcConfig () object that specifies the VPC that this training job has access // to. For more information, see Protect Training Jobs by Using an Amazon Virtual // Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html). VpcConfig *types.VpcConfig // The status of the training job. Amazon SageMaker provides the following training // job statuses: // // * InProgress - The training is in progress. // // * Completed // - The training job has completed. // // * Failed - The training job has failed. // To see the reason for the failure, see the FailureReason field in the response // to a DescribeTrainingJobResponse call. // // * Stopping - The training job is // stopping. // // * Stopped - The training job has stopped. // // For more detailed // information, see SecondaryStatus. TrainingJobStatus types.TrainingJobStatus // A history of all of the secondary statuses that the training job has // transitioned through. SecondaryStatusTransitions []*types.SecondaryStatusTransition // A Boolean indicating whether managed spot training is enabled (True) or not // (False). EnableManagedSpotTraining *bool // Configuration information for the debug hook parameters, collection // configuration, and storage paths. DebugHookConfig *types.DebugHookConfig // The S3 path where model artifacts that you configured when creating the job are // stored. Amazon SageMaker creates subfolders for model artifacts. OutputDataConfig *types.OutputDataConfig // Information about the algorithm used for training, and algorithm metadata. AlgorithmSpecification *types.AlgorithmSpecification // Indicates the time when the training job starts on training instances. You are // billed for the time interval between this time and the value of TrainingEndTime. // The start time in CloudWatch Logs might be later than this time. The difference // is due to the time it takes to download the training data and to the size of the // training container. TrainingStartTime *time.Time // The Amazon Resource Name (ARN) of the training job. TrainingJobArn *string // The training time in seconds. TrainingTimeInSeconds *int32 // Status about the debug rule evaluation. DebugRuleEvaluationStatuses []*types.DebugRuleEvaluationStatus // Algorithm-specific parameters. HyperParameters map[string]*string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeTransformJobInput ¶
type DescribeTransformJobInput struct { // The name of the transform job that you want to view details of. TransformJobName *string }
type DescribeTransformJobOutput ¶
type DescribeTransformJobOutput struct { // The name of the model used in the transform job. ModelName *string // A timestamp that shows when the transform Job was created. CreationTime *time.Time // Specifies the number of records to include in a mini-batch for an HTTP inference // request. A record is a single unit of input data that inference can be made on. // For example, a single line in a CSV file is a record. To enable the batch // strategy, you must set SplitType to Line, RecordIO, or TFRecord. BatchStrategy types.BatchStrategy // The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job // that created the transform or training job. LabelingJobArn *string // The name of the transform job. TransformJobName *string // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *types.ExperimentConfig // The maximum payload size, in MB, used in the transform job. MaxPayloadInMB *int32 // If the transform job failed, FailureReason describes why it failed. A transform // job creates a log file, which includes error messages, and stores it as an // Amazon S3 object. For more information, see Log Amazon SageMaker Events with // Amazon CloudWatch // (https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html). FailureReason *string // The Amazon Resource Name (ARN) of the AutoML transform job. AutoMLJobArn *string // The status of the transform job. If the transform job failed, the reason is // returned in the FailureReason field. TransformJobStatus types.TransformJobStatus // Indicates when the transform job has been completed, or has stopped or failed. // You are billed for the time interval between this time and the value of // <code>TransformStartTime</code>.</p> TransformEndTime *time.Time // The data structure used to specify the data to be used for inference in a batch // transform job and to associate the data that is relevant to the prediction // results in the output. The input filter provided allows you to exclude input // data that is not needed for inference in a batch transform job. The output // filter provided allows you to include input data relevant to interpreting the // predictions in the output from the job. For more information, see Associate // Prediction Results with their Corresponding Input Records // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html). DataProcessing *types.DataProcessing // The maximum number of parallel requests on each instance node that can be // launched in a transform job. The default value is 1. MaxConcurrentTransforms *int32 // Describes the resources, including ML instance types and ML instance count, to // use for the transform job. TransformResources *types.TransformResources // Describes the dataset to be transformed and the Amazon S3 location where it is // stored. TransformInput *types.TransformInput // Indicates when the transform job starts on ML instances. You are billed for the // time interval between this time and the value of TransformEndTime. TransformStartTime *time.Time // The Amazon Resource Name (ARN) of the transform job. TransformJobArn *string // The timeout and maximum number of retries for processing a transform job // invocation. ModelClientConfig *types.ModelClientConfig // The environment variables to set in the Docker container. We support up to 16 // key and values entries in the map. Environment map[string]*string // Identifies the Amazon S3 location where you want Amazon SageMaker to save the // results from the transform job. TransformOutput *types.TransformOutput // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeTrialComponentInput ¶
type DescribeTrialComponentInput struct { // The name of the trial component to describe. TrialComponentName *string }
type DescribeTrialComponentOutput ¶
type DescribeTrialComponentOutput struct { // When the component started. StartTime *time.Time // The metrics for the component. Metrics []*types.TrialComponentMetricSummary // The hyperparameters of the component. Parameters map[string]*types.TrialComponentParameterValue // Who last modified the component. LastModifiedBy *types.UserContext // The Amazon Resource Name (ARN) of the source and, optionally, the job type. Source *types.TrialComponentSource // The name of the trial component. TrialComponentName *string // When the component ended. EndTime *time.Time // The input artifacts of the component. InputArtifacts map[string]*types.TrialComponentArtifact // The output artifacts of the component. OutputArtifacts map[string]*types.TrialComponentArtifact // Who created the component. CreatedBy *types.UserContext // The status of the component. States include: // // * InProgress // // * // Completed // // * Failed Status *types.TrialComponentStatus // The name of the component as displayed. If DisplayName isn't specified, // TrialComponentName is displayed. DisplayName *string // When the component was last modified. LastModifiedTime *time.Time // When the component was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the trial component. TrialComponentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeTrialInput ¶
type DescribeTrialInput struct { // The name of the trial to describe. TrialName *string }
type DescribeTrialOutput ¶
type DescribeTrialOutput struct { // When the trial was last modified. LastModifiedTime *time.Time // The name of the trial as displayed. If DisplayName isn't specified, TrialName is // displayed. DisplayName *string // The Amazon Resource Name (ARN) of the trial. TrialArn *string // When the trial was created. CreationTime *time.Time // The name of the experiment the trial is part of. ExperimentName *string // The name of the trial. TrialName *string // Who created the trial. CreatedBy *types.UserContext // Who last modified the trial. LastModifiedBy *types.UserContext // The Amazon Resource Name (ARN) of the source and, optionally, the job type. Source *types.TrialSource // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeUserProfileInput ¶
type DescribeUserProfileInput struct { // The user profile name. UserProfileName *string // The domain ID. DomainId *string }
type DescribeUserProfileOutput ¶
type DescribeUserProfileOutput struct { // The user profile Amazon Resource Name (ARN). UserProfileArn *string // The SSO user value. SingleSignOnUserValue *string // The ID of the user's profile in the Amazon Elastic File System (EFS) volume. HomeEfsFileSystemUid *string // The failure reason. FailureReason *string // A collection of settings. UserSettings *types.UserSettings // The SSO user identifier. SingleSignOnUserIdentifier *string // The ID of the domain that contains the profile. DomainId *string // The status. Status types.UserProfileStatus // The user profile name. UserProfileName *string // The last modified time. LastModifiedTime *time.Time // The creation time. CreationTime *time.Time // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeWorkforceInput ¶
type DescribeWorkforceInput struct { // The name of the private workforce whose access you want to restrict. // WorkforceName is automatically set to default when a workforce is created and // cannot be modified. WorkforceName *string }
type DescribeWorkforceOutput ¶
type DescribeWorkforceOutput struct { // A single private workforce, which is automatically created when you create your // first private work team. You can create one private work force in each AWS // Region. By default, any workforce-related API operation used in a specific // region will apply to the workforce created in that region. To learn how to // create a private workforce, see Create a Private Workforce // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html). Workforce *types.Workforce // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DescribeWorkteamInput ¶
type DescribeWorkteamInput struct { // The name of the work team to return a description of. WorkteamName *string }
type DescribeWorkteamOutput ¶
type DescribeWorkteamOutput struct { // A Workteam instance that contains information about the work team. Workteam *types.Workteam // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type DisassociateTrialComponentInput ¶
type DisassociateTrialComponentInput struct { // The name of the trial to disassociate from. TrialName *string // The name of the component to disassociate from the trial. TrialComponentName *string }
type DisassociateTrialComponentOutput ¶
type DisassociateTrialComponentOutput struct { // The ARN of the trial component. TrialComponentArn *string // The Amazon Resource Name (ARN) of the trial. TrialArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type EndpointResolver ¶
type EndpointResolver interface { ResolveEndpoint(region string, options ResolverOptions) (aws.Endpoint, error) }
EndpointResolver interface for resolving service endpoints.
func WithEndpointResolver ¶
func WithEndpointResolver(awsResolver aws.EndpointResolver, fallbackResolver EndpointResolver) EndpointResolver
WithEndpointResolver returns an EndpointResolver that first delegates endpoint resolution to the awsResolver. If awsResolver returns aws.EndpointNotFoundError error, the resolver will use the the provided fallbackResolver for resolution. awsResolver and fallbackResolver must not be nil
type EndpointResolverFunc ¶
type EndpointResolverFunc func(region string, options ResolverOptions) (aws.Endpoint, error)
EndpointResolverFunc is a helper utility that wraps a function so it satisfies the EndpointResolver interface. This is useful when you want to add additional endpoint resolving logic, or stub out specific endpoints with custom values.
func (EndpointResolverFunc) ResolveEndpoint ¶
func (fn EndpointResolverFunc) ResolveEndpoint(region string, options ResolverOptions) (endpoint aws.Endpoint, err error)
type GetSearchSuggestionsInput ¶
type GetSearchSuggestionsInput struct { // Limits the property names that are included in the response. SuggestionQuery *types.SuggestionQuery // The name of the Amazon SageMaker resource to search for. Resource types.ResourceType }
type GetSearchSuggestionsOutput ¶
type GetSearchSuggestionsOutput struct { // A list of property names for a Resource that match a SuggestionQuery. PropertyNameSuggestions []*types.PropertyNameSuggestion // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type HTTPClient ¶
type HTTPSignerV4 ¶
type HTTPSignerV4 interface { SignHTTP(ctx context.Context, credentials aws.Credentials, r *http.Request, payloadHash string, service string, region string, signingTime time.Time) error }
type ListAlgorithmsInput ¶
type ListAlgorithmsInput struct { // The sort order for the results. The default is Ascending. SortOrder types.SortOrder // A string in the algorithm name. This filter returns only algorithms whose name // contains the specified string. NameContains *string // A filter that returns only algorithms created before the specified time // (timestamp). CreationTimeBefore *time.Time // A filter that returns only algorithms created after the specified time // (timestamp). CreationTimeAfter *time.Time // The maximum number of algorithms to return in the response. MaxResults *int32 // If the response to a previous ListAlgorithms request was truncated, the response // includes a NextToken. To retrieve the next set of algorithms, use the token in // the next request. NextToken *string // The parameter by which to sort the results. The default is CreationTime. SortBy types.AlgorithmSortBy }
type ListAlgorithmsOutput ¶
type ListAlgorithmsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of algorithms, use it in the subsequent request. NextToken *string // >An array of AlgorithmSummary objects, each of which lists an algorithm. AlgorithmSummaryList []*types.AlgorithmSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListAppsInput ¶
type ListAppsInput struct { // The sort order for the results. The default is Ascending. SortOrder types.SortOrder // A parameter to search by user profile name. UserProfileNameEquals *string // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Returns a list up to a specified limit. MaxResults *int32 // The parameter by which to sort the results. The default is CreationTime. SortBy types.AppSortKey // A parameter to search for the domain ID. DomainIdEquals *string }
type ListAppsOutput ¶
type ListAppsOutput struct { // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // The list of apps. Apps []*types.AppDetails // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListAutoMLJobsInput ¶
type ListAutoMLJobsInput struct { // The parameter by which to sort the results. The default is AutoMLJobName. SortBy types.AutoMLSortBy // Request a list of jobs, using a filter for time. CreationTimeBefore *time.Time // Request a list of jobs, using a filter for status. StatusEquals types.AutoMLJobStatus // Request a list of jobs, using a filter for time. LastModifiedTimeBefore *time.Time // Request a list of jobs, using a filter for time. CreationTimeAfter *time.Time // Request a list of jobs, using a search filter for name. NameContains *string // The sort order for the results. The default is Descending. SortOrder types.AutoMLSortOrder // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Request a list of jobs, using a filter for time. LastModifiedTimeAfter *time.Time // Request a list of jobs up to a specified limit. MaxResults *int32 }
type ListAutoMLJobsOutput ¶
type ListAutoMLJobsOutput struct { // Returns a summary list of jobs. AutoMLJobSummaries []*types.AutoMLJobSummary // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListCandidatesForAutoMLJobInput ¶
type ListCandidatesForAutoMLJobInput struct { // List the Candidates for the job and filter by status. StatusEquals types.CandidateStatus // The parameter by which to sort the results. The default is Descending. SortBy types.CandidateSortBy // The sort order for the results. The default is Ascending. SortOrder types.AutoMLSortOrder // List the job's Candidates up to a specified limit. MaxResults *int32 // List the Candidates created for the job by providing the job's name. AutoMLJobName *string // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // List the Candidates for the job and filter by candidate name. CandidateNameEquals *string }
type ListCandidatesForAutoMLJobOutput ¶
type ListCandidatesForAutoMLJobOutput struct { // Summaries about the Candidates. Candidates []*types.AutoMLCandidate // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListCodeRepositoriesInput ¶
type ListCodeRepositoriesInput struct { // A filter that returns only Git repositories that were last modified after the // specified time. LastModifiedTimeAfter *time.Time // A string in the Git repositories name. This filter returns only repositories // whose name contains the specified string. NameContains *string // A filter that returns only Git repositories that were last modified before the // specified time. LastModifiedTimeBefore *time.Time // A filter that returns only Git repositories that were created before the // specified time. CreationTimeBefore *time.Time // A filter that returns only Git repositories that were created after the // specified time. CreationTimeAfter *time.Time // The sort order for results. The default is Ascending. SortOrder types.CodeRepositorySortOrder // If the result of a ListCodeRepositoriesOutput request was truncated, the // response includes a NextToken. To get the next set of Git repositories, use the // token in the next request. NextToken *string // The maximum number of Git repositories to return in the response. MaxResults *int32 // The field to sort results by. The default is Name. SortBy types.CodeRepositorySortBy }
type ListCodeRepositoriesOutput ¶
type ListCodeRepositoriesOutput struct { // If the result of a ListCodeRepositoriesOutput request was truncated, the // response includes a NextToken. To get the next set of Git repositories, use the // token in the next request. NextToken *string // Gets a list of summaries of the Git repositories. Each summary specifies the // following values for the repository: // // * Name // // * Amazon Resource Name // (ARN) // // * Creation time // // * Last modified time // // * Configuration // information, including the URL location of the repository and the ARN of the AWS // Secrets Manager secret that contains the credentials used to access the // repository. CodeRepositorySummaryList []*types.CodeRepositorySummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListCompilationJobsInput ¶
type ListCompilationJobsInput struct { // If the result of the previous ListCompilationJobs request was truncated, the // response includes a NextToken. To retrieve the next set of model compilation // jobs, use the token in the next request. NextToken *string // A filter that returns the model compilation jobs that were created after a // specified time. CreationTimeAfter *time.Time // A filter that returns the model compilation jobs that were modified before a // specified time. LastModifiedTimeBefore *time.Time // The field by which to sort results. The default is CreationTime. SortBy types.ListCompilationJobsSortBy // A filter that returns the model compilation jobs whose name contains a specified // string. NameContains *string // The maximum number of model compilation jobs to return in the response. MaxResults *int32 // A filter that returns the model compilation jobs that were modified after a // specified time. LastModifiedTimeAfter *time.Time // The sort order for results. The default is Ascending. SortOrder types.SortOrder // A filter that retrieves model compilation jobs with a specific // DescribeCompilationJobResponse$CompilationJobStatus () status. StatusEquals types.CompilationJobStatus // A filter that returns the model compilation jobs that were created before a // specified time. CreationTimeBefore *time.Time }
type ListCompilationJobsOutput ¶
type ListCompilationJobsOutput struct { // An array of CompilationJobSummary () objects, each describing a model // compilation job. CompilationJobSummaries []*types.CompilationJobSummary // If the response is truncated, Amazon SageMaker returns this NextToken. To // retrieve the next set of model compilation jobs, use this token in the next // request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListDomainsInput ¶
type ListDomainsInput struct { // Returns a list up to a specified limit. MaxResults *int32 // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string }
type ListDomainsOutput ¶
type ListDomainsOutput struct { // The list of domains. Domains []*types.DomainDetails // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListEndpointConfigsInput ¶
type ListEndpointConfigsInput struct { // A filter that returns only endpoint configurations created before the specified // time (timestamp). CreationTimeBefore *time.Time // A string in the endpoint configuration name. This filter returns only endpoint // configurations whose name contains the specified string. NameContains *string // A filter that returns only endpoint configurations with a creation time greater // than or equal to the specified time (timestamp). CreationTimeAfter *time.Time // If the result of the previous ListEndpointConfig request was truncated, the // response includes a NextToken. To retrieve the next set of endpoint // configurations, use the token in the next request. NextToken *string // The maximum number of training jobs to return in the response. MaxResults *int32 // The field to sort results by. The default is CreationTime. SortBy types.EndpointConfigSortKey // The sort order for results. The default is Descending. SortOrder types.OrderKey }
type ListEndpointConfigsOutput ¶
type ListEndpointConfigsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of endpoint configurations, use it in the subsequent request NextToken *string // An array of endpoint configurations. EndpointConfigs []*types.EndpointConfigSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListEndpointsInput ¶
type ListEndpointsInput struct { // A filter that returns only endpoints with the specified status. StatusEquals types.EndpointStatus // A filter that returns only endpoints that were modified after the specified // timestamp. LastModifiedTimeAfter *time.Time // Sorts the list of results. The default is CreationTime. SortBy types.EndpointSortKey // A filter that returns only endpoints that were created before the specified time // (timestamp). CreationTimeBefore *time.Time // If the result of a ListEndpoints request was truncated, the response includes a // NextToken. To retrieve the next set of endpoints, use the token in the next // request. NextToken *string // The maximum number of endpoints to return in the response. MaxResults *int32 // A string in endpoint names. This filter returns only endpoints whose name // contains the specified string. NameContains *string // The sort order for results. The default is Descending. SortOrder types.OrderKey // A filter that returns only endpoints with a creation time greater than or equal // to the specified time (timestamp). CreationTimeAfter *time.Time // A filter that returns only endpoints that were modified before the specified // timestamp. LastModifiedTimeBefore *time.Time }
type ListEndpointsOutput ¶
type ListEndpointsOutput struct { // An array or endpoint objects. Endpoints []*types.EndpointSummary // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of training jobs, use it in the subsequent request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListExperimentsInput ¶
type ListExperimentsInput struct { // The sort order. The default value is Descending. SortOrder types.SortOrder // A filter that returns only experiments created before the specified time. CreatedBefore *time.Time // A filter that returns only experiments created after the specified time. CreatedAfter *time.Time // The property used to sort results. The default value is CreationTime. SortBy types.SortExperimentsBy // If the previous call to ListExperiments didn't return the full set of // experiments, the call returns a token for getting the next set of experiments. NextToken *string // The maximum number of experiments to return in the response. The default value // is 10. MaxResults *int32 }
type ListExperimentsOutput ¶
type ListExperimentsOutput struct { // A token for getting the next set of experiments, if there are any. NextToken *string // A list of the summaries of your experiments. ExperimentSummaries []*types.ExperimentSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListFlowDefinitionsInput ¶
type ListFlowDefinitionsInput struct { // A token to resume pagination. NextToken *string // An optional value that specifies whether you want the results sorted in // Ascending or Descending order. SortOrder types.SortOrder // A filter that returns only flow definitions with a creation time greater than or // equal to the specified timestamp. CreationTimeAfter *time.Time // The total number of items to return. If the total number of available items is // more than the value specified in MaxResults, then a NextToken will be provided // in the output that you can use to resume pagination. MaxResults *int32 // A filter that returns only flow definitions that were created before the // specified timestamp. CreationTimeBefore *time.Time }
type ListFlowDefinitionsOutput ¶
type ListFlowDefinitionsOutput struct { // A token to resume pagination. NextToken *string // An array of objects describing the flow definitions. FlowDefinitionSummaries []*types.FlowDefinitionSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListHumanTaskUisInput ¶
type ListHumanTaskUisInput struct { // The total number of items to return. If the total number of available items is // more than the value specified in MaxResults, then a NextToken will be provided // in the output that you can use to resume pagination. MaxResults *int32 // A filter that returns only human task user interfaces that were created before // the specified timestamp. CreationTimeBefore *time.Time // An optional value that specifies whether you want the results sorted in // Ascending or Descending order. SortOrder types.SortOrder // A token to resume pagination. NextToken *string // A filter that returns only human task user interfaces with a creation time // greater than or equal to the specified timestamp. CreationTimeAfter *time.Time }
type ListHumanTaskUisOutput ¶
type ListHumanTaskUisOutput struct { // An array of objects describing the human task user interfaces. HumanTaskUiSummaries []*types.HumanTaskUiSummary // A token to resume pagination. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListHyperParameterTuningJobsInput ¶
type ListHyperParameterTuningJobsInput struct { // A filter that returns only tuning jobs that were created after the specified // time. CreationTimeAfter *time.Time // If the result of the previous ListHyperParameterTuningJobs request was // truncated, the response includes a NextToken. To retrieve the next set of tuning // jobs, use the token in the next request. NextToken *string // A string in the tuning job name. This filter returns only tuning jobs whose name // contains the specified string. NameContains *string // A filter that returns only tuning jobs that were created before the specified // time. CreationTimeBefore *time.Time // A filter that returns only tuning jobs that were modified before the specified // time. LastModifiedTimeBefore *time.Time // The maximum number of tuning jobs to return. The default value is 10. MaxResults *int32 // A filter that returns only tuning jobs with the specified status. StatusEquals types.HyperParameterTuningJobStatus // A filter that returns only tuning jobs that were modified after the specified // time. LastModifiedTimeAfter *time.Time // The field to sort results by. The default is Name. SortBy types.HyperParameterTuningJobSortByOptions // The sort order for results. The default is Ascending. SortOrder types.SortOrder }
type ListHyperParameterTuningJobsOutput ¶
type ListHyperParameterTuningJobsOutput struct { // If the result of this ListHyperParameterTuningJobs request was truncated, the // response includes a NextToken. To retrieve the next set of tuning jobs, use the // token in the next request. NextToken *string // A list of HyperParameterTuningJobSummary () objects that describe the tuning // jobs that the ListHyperParameterTuningJobs request returned. HyperParameterTuningJobSummaries []*types.HyperParameterTuningJobSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListLabelingJobsForWorkteamInput ¶
type ListLabelingJobsForWorkteamInput struct { // The field to sort results by. The default is CreationTime. SortBy types.ListLabelingJobsForWorkteamSortByOptions // A filter the limits jobs to only the ones whose job reference code contains the // specified string. JobReferenceCodeContains *string // If the result of the previous ListLabelingJobsForWorkteam request was truncated, // the response includes a NextToken. To retrieve the next set of labeling jobs, // use the token in the next request. NextToken *string // The maximum number of labeling jobs to return in each page of the response. MaxResults *int32 // A filter that returns only labeling jobs created before the specified time // (timestamp). CreationTimeBefore *time.Time // The sort order for results. The default is Ascending. SortOrder types.SortOrder // A filter that returns only labeling jobs created after the specified time // (timestamp). CreationTimeAfter *time.Time // The Amazon Resource Name (ARN) of the work team for which you want to see // labeling jobs for. WorkteamArn *string }
type ListLabelingJobsForWorkteamOutput ¶
type ListLabelingJobsForWorkteamOutput struct { // An array of LabelingJobSummary objects, each describing a labeling job. LabelingJobSummaryList []*types.LabelingJobForWorkteamSummary // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of labeling jobs, use it in the subsequent request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListLabelingJobsInput ¶
type ListLabelingJobsInput struct { // A string in the labeling job name. This filter returns only labeling jobs whose // name contains the specified string. NameContains *string // If the result of the previous ListLabelingJobs request was truncated, the // response includes a NextToken. To retrieve the next set of labeling jobs, use // the token in the next request. NextToken *string // A filter that returns only labeling jobs created after the specified time // (timestamp). CreationTimeAfter *time.Time // The field to sort results by. The default is CreationTime. SortBy types.SortBy // The sort order for results. The default is Ascending. SortOrder types.SortOrder // A filter that retrieves only labeling jobs with a specific status. StatusEquals types.LabelingJobStatus // A filter that returns only labeling jobs modified after the specified time // (timestamp). LastModifiedTimeAfter *time.Time // The maximum number of labeling jobs to return in each page of the response. MaxResults *int32 // A filter that returns only labeling jobs created before the specified time // (timestamp). CreationTimeBefore *time.Time // A filter that returns only labeling jobs modified before the specified time // (timestamp). LastModifiedTimeBefore *time.Time }
type ListLabelingJobsOutput ¶
type ListLabelingJobsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of labeling jobs, use it in the subsequent request. NextToken *string // An array of LabelingJobSummary objects, each describing a labeling job. LabelingJobSummaryList []*types.LabelingJobSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListModelPackagesInput ¶
type ListModelPackagesInput struct { // The maximum number of model packages to return in the response. MaxResults *int32 // The sort order for the results. The default is Ascending. SortOrder types.SortOrder // The parameter by which to sort the results. The default is CreationTime. SortBy types.ModelPackageSortBy // A filter that returns only model packages created after the specified time // (timestamp). CreationTimeAfter *time.Time // A filter that returns only model packages created before the specified time // (timestamp). CreationTimeBefore *time.Time // If the response to a previous ListModelPackages request was truncated, the // response includes a NextToken. To retrieve the next set of model packages, use // the token in the next request. NextToken *string // A string in the model package name. This filter returns only model packages // whose name contains the specified string. NameContains *string }
type ListModelPackagesOutput ¶
type ListModelPackagesOutput struct { // An array of ModelPackageSummary objects, each of which lists a model package. ModelPackageSummaryList []*types.ModelPackageSummary // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of model packages, use it in the subsequent request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListModelsInput ¶
type ListModelsInput struct { // A filter that returns only models with a creation time greater than or equal to // the specified time (timestamp). CreationTimeAfter *time.Time // If the response to a previous ListModels request was truncated, the response // includes a NextToken. To retrieve the next set of models, use the token in the // next request. NextToken *string // A string in the training job name. This filter returns only models in the // training job whose name contains the specified string. NameContains *string // A filter that returns only models created before the specified time (timestamp). CreationTimeBefore *time.Time // The maximum number of models to return in the response. MaxResults *int32 // Sorts the list of results. The default is CreationTime. SortBy types.ModelSortKey // The sort order for results. The default is Descending. SortOrder types.OrderKey }
type ListModelsOutput ¶
type ListModelsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of models, use it in the subsequent request. NextToken *string // An array of ModelSummary objects, each of which lists a model. Models []*types.ModelSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListMonitoringExecutionsInput ¶
type ListMonitoringExecutionsInput struct { // Whether to sort the results in Ascending or Descending order. The default is // Descending. SortOrder types.SortOrder // A filter that returns only jobs modified after a specified time. LastModifiedTimeBefore *time.Time // A filter that returns only jobs modified before a specified time. LastModifiedTimeAfter *time.Time // Filter for jobs scheduled after a specified time. ScheduledTimeAfter *time.Time // The maximum number of jobs to return in the response. The default value is 10. MaxResults *int32 // Filter for jobs scheduled before a specified time. ScheduledTimeBefore *time.Time // Whether to sort results by Status, CreationTime, ScheduledTime field. The // default is CreationTime. SortBy types.MonitoringExecutionSortKey // The token returned if the response is truncated. To retrieve the next set of job // executions, use it in the next request. NextToken *string // Name of a specific endpoint to fetch jobs for. EndpointName *string // Name of a specific schedule to fetch jobs for. MonitoringScheduleName *string // A filter that returns only jobs created before a specified time. CreationTimeBefore *time.Time // A filter that retrieves only jobs with a specific status. StatusEquals types.ExecutionStatus // A filter that returns only jobs created after a specified time. CreationTimeAfter *time.Time }
type ListMonitoringExecutionsOutput ¶
type ListMonitoringExecutionsOutput struct { // A JSON array in which each element is a summary for a monitoring execution. MonitoringExecutionSummaries []*types.MonitoringExecutionSummary // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of jobs, use it in the subsequent reques NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListMonitoringSchedulesInput ¶
type ListMonitoringSchedulesInput struct { // The maximum number of jobs to return in the response. The default value is 10. MaxResults *int32 // A filter that returns only monitoring schedules modified after a specified time. LastModifiedTimeAfter *time.Time // Name of a specific endpoint to fetch schedules for. EndpointName *string // Whether to sort results by Status, CreationTime, ScheduledTime field. The // default is CreationTime. SortBy types.MonitoringScheduleSortKey // Whether to sort the results in Ascending or Descending order. The default is // Descending. SortOrder types.SortOrder // The token returned if the response is truncated. To retrieve the next set of job // executions, use it in the next request. NextToken *string // A filter that returns only monitoring schedules created after a specified time. CreationTimeAfter *time.Time // Filter for monitoring schedules whose name contains a specified string. NameContains *string // A filter that returns only monitoring schedules created before a specified time. CreationTimeBefore *time.Time // A filter that returns only monitoring schedules modified before a specified // time. StatusEquals types.ScheduleStatus // A filter that returns only monitoring schedules modified before a specified // time. LastModifiedTimeBefore *time.Time }
type ListMonitoringSchedulesOutput ¶
type ListMonitoringSchedulesOutput struct { // A JSON array in which each element is a summary for a monitoring schedule. MonitoringScheduleSummaries []*types.MonitoringScheduleSummary // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of jobs, use it in the subsequent reques NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListNotebookInstanceLifecycleConfigsInput ¶
type ListNotebookInstanceLifecycleConfigsInput struct { // The maximum number of lifecycle configurations to return in the response. MaxResults *int32 // A filter that returns only lifecycle configurations that were modified after the // specified time (timestamp). LastModifiedTimeAfter *time.Time // A filter that returns only lifecycle configurations that were created before the // specified time (timestamp). CreationTimeBefore *time.Time // A filter that returns only lifecycle configurations that were modified before // the specified time (timestamp). LastModifiedTimeBefore *time.Time // If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, // the response includes a NextToken. To get the next set of lifecycle // configurations, use the token in the next request. NextToken *string // A filter that returns only lifecycle configurations that were created after the // specified time (timestamp). CreationTimeAfter *time.Time // A string in the lifecycle configuration name. This filter returns only lifecycle // configurations whose name contains the specified string. NameContains *string // Sorts the list of results. The default is CreationTime. SortBy types.NotebookInstanceLifecycleConfigSortKey // The sort order for results. SortOrder types.NotebookInstanceLifecycleConfigSortOrder }
type ListNotebookInstanceLifecycleConfigsOutput ¶
type ListNotebookInstanceLifecycleConfigsOutput struct { // An array of NotebookInstanceLifecycleConfiguration objects, each listing a // lifecycle configuration. NotebookInstanceLifecycleConfigs []*types.NotebookInstanceLifecycleConfigSummary // If the response is truncated, Amazon SageMaker returns this token. To get the // next set of lifecycle configurations, use it in the next request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListNotebookInstancesInput ¶
type ListNotebookInstancesInput struct { // A filter that returns only notebook instances that were modified before the // specified time (timestamp). LastModifiedTimeBefore *time.Time // A string in the name of a notebook instances lifecycle configuration associated // with this notebook instance. This filter returns only notebook instances // associated with a lifecycle configuration with a name that contains the // specified string. NotebookInstanceLifecycleConfigNameContains *string // If the previous call to the ListNotebookInstances is truncated, the response // includes a NextToken. You can use this token in your subsequent // ListNotebookInstances request to fetch the next set of notebook instances. You // might specify a filter or a sort order in your request. When response is // truncated, you must use the same values for the filer and sort order in the next // request. NextToken *string // The field to sort results by. The default is Name. SortBy types.NotebookInstanceSortKey // The sort order for results. SortOrder types.NotebookInstanceSortOrder // A filter that returns only notebook instances that were modified after the // specified time (timestamp). LastModifiedTimeAfter *time.Time // The maximum number of notebook instances to return. MaxResults *int32 // A filter that returns only notebook instances that were created before the // specified time (timestamp). CreationTimeBefore *time.Time // A string in the name or URL of a Git repository associated with this notebook // instance. This filter returns only notebook instances associated with a git // repository with a name that contains the specified string. DefaultCodeRepositoryContains *string // A filter that returns only notebook instances with the specified status. StatusEquals types.NotebookInstanceStatus // A filter that returns only notebook instances that were created after the // specified time (timestamp). CreationTimeAfter *time.Time // A string in the notebook instances' name. This filter returns only notebook // instances whose name contains the specified string. NameContains *string // A filter that returns only notebook instances with associated with the specified // git repository. AdditionalCodeRepositoryEquals *string }
type ListNotebookInstancesOutput ¶
type ListNotebookInstancesOutput struct { // If the response to the previous ListNotebookInstances request was truncated, // Amazon SageMaker returns this token. To retrieve the next set of notebook // instances, use the token in the next request. NextToken *string // An array of NotebookInstanceSummary objects, one for each notebook instance. NotebookInstances []*types.NotebookInstanceSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListProcessingJobsInput ¶
type ListProcessingJobsInput struct { // The field to sort results by. The default is CreationTime. SortBy types.SortBy // A filter that returns only processing jobs created after the specified time. CreationTimeBefore *time.Time // A filter that returns only processing jobs created after the specified time. CreationTimeAfter *time.Time // A filter that returns only processing jobs modified before the specified time. LastModifiedTimeBefore *time.Time // A filter that retrieves only processing jobs with a specific status. StatusEquals types.ProcessingJobStatus // The sort order for results. The default is Ascending. SortOrder types.SortOrder // If the result of the previous ListProcessingJobs request was truncated, the // response includes a NextToken. To retrieve the next set of processing jobs, use // the token in the next request. NextToken *string // The maximum number of processing jobs to return in the response. MaxResults *int32 // A filter that returns only processing jobs modified after the specified time. LastModifiedTimeAfter *time.Time // A string in the processing job name. This filter returns only processing jobs // whose name contains the specified string. NameContains *string }
type ListProcessingJobsOutput ¶
type ListProcessingJobsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of processing jobs, use it in the subsequent request. NextToken *string // An array of ProcessingJobSummary objects, each listing a processing job. ProcessingJobSummaries []*types.ProcessingJobSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListSubscribedWorkteamsInput ¶
type ListSubscribedWorkteamsInput struct { // If the result of the previous ListSubscribedWorkteams request was truncated, the // response includes a NextToken. To retrieve the next set of labeling jobs, use // the token in the next request. NextToken *string // A string in the work team name. This filter returns only work teams whose name // contains the specified string. NameContains *string // The maximum number of work teams to return in each page of the response. MaxResults *int32 }
type ListSubscribedWorkteamsOutput ¶
type ListSubscribedWorkteamsOutput struct { // An array of Workteam objects, each describing a work team. SubscribedWorkteams []*types.SubscribedWorkteam // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of work teams, use it in the subsequent request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTagsInput ¶
type ListTagsInput struct { // The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve. ResourceArn *string // Maximum number of tags to return. MaxResults *int32 // If the response to the previous ListTags request is truncated, Amazon SageMaker // returns this token. To retrieve the next set of tags, use it in the subsequent // request. NextToken *string }
type ListTagsOutput ¶
type ListTagsOutput struct { // If response is truncated, Amazon SageMaker includes a token in the response. You // can use this token in your subsequent request to fetch next set of tokens. NextToken *string // An array of Tag objects, each with a tag key and a value. Tags []*types.Tag // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTrainingJobsForHyperParameterTuningJobInput ¶
type ListTrainingJobsForHyperParameterTuningJobInput struct { // The field to sort results by. The default is Name. If the value of this field is // FinalObjectiveMetricValue, any training jobs that did not return an objective // metric are not listed. SortBy types.TrainingJobSortByOptions // The maximum number of training jobs to return. The default value is 10. MaxResults *int32 // If the result of the previous ListTrainingJobsForHyperParameterTuningJob request // was truncated, the response includes a NextToken. To retrieve the next set of // training jobs, use the token in the next request. NextToken *string // The sort order for results. The default is Ascending. SortOrder types.SortOrder // The name of the tuning job whose training jobs you want to list. HyperParameterTuningJobName *string // A filter that returns only training jobs with the specified status. StatusEquals types.TrainingJobStatus }
type ListTrainingJobsForHyperParameterTuningJobOutput ¶
type ListTrainingJobsForHyperParameterTuningJobOutput struct { // A list of TrainingJobSummary () objects that describe the training jobs that the // ListTrainingJobsForHyperParameterTuningJob request returned. TrainingJobSummaries []*types.HyperParameterTrainingJobSummary // If the result of this ListTrainingJobsForHyperParameterTuningJob request was // truncated, the response includes a NextToken. To retrieve the next set of // training jobs, use the token in the next request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTrainingJobsInput ¶
type ListTrainingJobsInput struct { // A filter that returns only training jobs created before the specified time // (timestamp). CreationTimeBefore *time.Time // The field to sort results by. The default is CreationTime. SortBy types.SortBy // A filter that returns only training jobs modified before the specified time // (timestamp). LastModifiedTimeBefore *time.Time // The maximum number of training jobs to return in the response. MaxResults *int32 // A filter that returns only training jobs modified after the specified time // (timestamp). LastModifiedTimeAfter *time.Time // A filter that retrieves only training jobs with a specific status. StatusEquals types.TrainingJobStatus // If the result of the previous ListTrainingJobs request was truncated, the // response includes a NextToken. To retrieve the next set of training jobs, use // the token in the next request. NextToken *string // The sort order for results. The default is Ascending. SortOrder types.SortOrder // A filter that returns only training jobs created after the specified time // (timestamp). CreationTimeAfter *time.Time // A string in the training job name. This filter returns only training jobs whose // name contains the specified string. NameContains *string }
type ListTrainingJobsOutput ¶
type ListTrainingJobsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of training jobs, use it in the subsequent request. NextToken *string // An array of TrainingJobSummary objects, each listing a training job. TrainingJobSummaries []*types.TrainingJobSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTransformJobsInput ¶
type ListTransformJobsInput struct { // A filter that retrieves only transform jobs with a specific status. StatusEquals types.TransformJobStatus // A filter that returns only transform jobs modified after the specified time. LastModifiedTimeAfter *time.Time // The sort order for results. The default is Descending. SortOrder types.SortOrder // If the result of the previous ListTransformJobs request was truncated, the // response includes a NextToken. To retrieve the next set of transform jobs, use // the token in the next request. NextToken *string // The maximum number of transform jobs to return in the response. The default // value is 10. MaxResults *int32 // The field to sort results by. The default is CreationTime. SortBy types.SortBy // A filter that returns only transform jobs modified before the specified time. LastModifiedTimeBefore *time.Time // A filter that returns only transform jobs created before the specified time. CreationTimeBefore *time.Time // A filter that returns only transform jobs created after the specified time. CreationTimeAfter *time.Time // A string in the transform job name. This filter returns only transform jobs // whose name contains the specified string. NameContains *string }
type ListTransformJobsOutput ¶
type ListTransformJobsOutput struct { // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of transform jobs, use it in the next request. NextToken *string // An array of TransformJobSummary objects. TransformJobSummaries []*types.TransformJobSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTrialComponentsInput ¶
type ListTrialComponentsInput struct { // If the previous call to ListTrialComponents didn't return the full set of // components, the call returns a token for getting the next set of components. NextToken *string // A filter that returns only components created before the specified time. CreatedBefore *time.Time // A filter that returns only components that have the specified source Amazon // Resource Name (ARN). If you specify SourceArn, you can't filter by // ExperimentName or TrialName. SourceArn *string // The maximum number of components to return in the response. The default value is // 10. MaxResults *int32 // A filter that returns only components that are part of the specified experiment. // If you specify ExperimentName, you can't filter by SourceArn or TrialName. ExperimentName *string // A filter that returns only components that are part of the specified trial. If // you specify TrialName, you can't filter by ExperimentName or SourceArn. TrialName *string // A filter that returns only components created after the specified time. CreatedAfter *time.Time // The property used to sort results. The default value is CreationTime. SortBy types.SortTrialComponentsBy // The sort order. The default value is Descending. SortOrder types.SortOrder }
type ListTrialComponentsOutput ¶
type ListTrialComponentsOutput struct { // A token for getting the next set of components, if there are any. NextToken *string // A list of the summaries of your trial components. TrialComponentSummaries []*types.TrialComponentSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListTrialsInput ¶
type ListTrialsInput struct { // A filter that returns only trials that are part of the specified experiment. ExperimentName *string // If the previous call to ListTrials didn't return the full set of trials, the // call returns a token for getting the next set of trials. NextToken *string // The maximum number of trials to return in the response. The default value is 10. MaxResults *int32 // The property used to sort results. The default value is CreationTime. SortBy types.SortTrialsBy // The sort order. The default value is Descending. SortOrder types.SortOrder // A filter that returns only trials created after the specified time. CreatedAfter *time.Time // A filter that returns only trials that are associated with the specified trial // component. TrialComponentName *string // A filter that returns only trials created before the specified time. CreatedBefore *time.Time }
type ListTrialsOutput ¶
type ListTrialsOutput struct { // A token for getting the next set of trials, if there are any. NextToken *string // A list of the summaries of your trials. TrialSummaries []*types.TrialSummary // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListUserProfilesInput ¶
type ListUserProfilesInput struct { // The sort order for the results. The default is Ascending. SortOrder types.SortOrder // A parameter by which to filter the results. UserProfileNameContains *string // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // The parameter by which to sort the results. The default is CreationTime. SortBy types.UserProfileSortKey // A parameter by which to filter the results. DomainIdEquals *string // Returns a list up to a specified limit. MaxResults *int32 }
type ListUserProfilesOutput ¶
type ListUserProfilesOutput struct { // The list of user profiles. UserProfiles []*types.UserProfileDetails // If the previous response was truncated, you will receive this token. Use it in // your next request to receive the next set of results. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListWorkforcesInput ¶
type ListWorkforcesInput struct { // A token to resume pagination. NextToken *string // Sort workforces using the workforce name or creation date. SortBy types.ListWorkforcesSortByOptions // Sort workforces in ascending or descending order. SortOrder types.SortOrder // The maximum number of workforces returned in the response. MaxResults *int32 // A filter you can use to search for workforces using part of the workforce name. NameContains *string }
type ListWorkforcesOutput ¶
type ListWorkforcesOutput struct { // A token to resume pagination. NextToken *string // A list containing information about your workforce. Workforces []*types.Workforce // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ListWorkteamsInput ¶
type ListWorkteamsInput struct { // If the result of the previous ListWorkteams request was truncated, the response // includes a NextToken. To retrieve the next set of labeling jobs, use the token // in the next request. NextToken *string // The maximum number of work teams to return in each page of the response. MaxResults *int32 // The field to sort results by. The default is CreationTime. SortBy types.ListWorkteamsSortByOptions // The sort order for results. The default is Ascending. SortOrder types.SortOrder // A string in the work team's name. This filter returns only work teams whose name // contains the specified string. NameContains *string }
type ListWorkteamsOutput ¶
type ListWorkteamsOutput struct { // An array of Workteam objects, each describing a work team. Workteams []*types.Workteam // If the response is truncated, Amazon SageMaker returns this token. To retrieve // the next set of work teams, use it in the subsequent request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type Options ¶
type Options struct { // Set of options to modify how an operation is invoked. These apply to all // operations invoked for this client. Use functional options on operation call to // modify this list for per operation behavior. APIOptions []func(*middleware.Stack) error // The credentials object to use when signing requests. Credentials aws.CredentialsProvider // The endpoint options to be used when attempting to resolve an endpoint. EndpointOptions ResolverOptions // The service endpoint resolver. EndpointResolver EndpointResolver // Signature Version 4 (SigV4) Signer HTTPSignerV4 HTTPSignerV4 // The region to send requests to. (Required) Region string // Retryer guides how HTTP requests should be retried in case of recoverable // failures. When nil the API client will use a default retryer. Retryer retry.Retryer // The HTTP client to invoke API calls with. Defaults to client's default HTTP // implementation if nil. HTTPClient HTTPClient }
func (Options) Copy ¶
Copy creates a clone where the APIOptions list is deep copied.
func (Options) GetCredentials ¶
func (o Options) GetCredentials() aws.CredentialsProvider
func (Options) GetEndpointOptions ¶
func (o Options) GetEndpointOptions() ResolverOptions
func (Options) GetEndpointResolver ¶
func (o Options) GetEndpointResolver() EndpointResolver
func (Options) GetHTTPSignerV4 ¶
func (o Options) GetHTTPSignerV4() HTTPSignerV4
func (Options) GetRegion ¶
func (Options) GetRetryer ¶
type RenderUiTemplateInput ¶
type RenderUiTemplateInput struct { // A Template object containing the worker UI template to render. UiTemplate *types.UiTemplate // The HumanTaskUiArn of the worker UI that you want to render. Do not provide a // HumanTaskUiArn if you use the UiTemplate parameter. See a list of available // Human Ui Amazon Resource Names (ARNs) in UiConfig (). HumanTaskUiArn *string // A RenderableTask object containing a representative task to render. Task *types.RenderableTask // The Amazon Resource Name (ARN) that has access to the S3 objects that are used // by the template. RoleArn *string }
type RenderUiTemplateOutput ¶
type RenderUiTemplateOutput struct { // A Liquid template that renders the HTML for the worker UI. RenderedContent *string // A list of one or more RenderingError objects if any were encountered while // rendering the template. If there were no errors, the list is empty. Errors []*types.RenderingError // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type ResolveEndpoint ¶
type ResolveEndpoint struct { Resolver EndpointResolver Options ResolverOptions }
func (*ResolveEndpoint) HandleSerialize ¶
func (m *ResolveEndpoint) HandleSerialize(ctx context.Context, in middleware.SerializeInput, next middleware.SerializeHandler) ( out middleware.SerializeOutput, metadata middleware.Metadata, err error, )
func (*ResolveEndpoint) ID ¶
func (*ResolveEndpoint) ID() string
type ResolveEndpointMiddlewareOptions ¶
type ResolveEndpointMiddlewareOptions interface { GetEndpointResolver() EndpointResolver GetEndpointOptions() ResolverOptions }
type ResolverOptions ¶
type ResolverOptions = internalendpoints.Options
ResolverOptions is the service endpoint resolver options
type SearchInput ¶
type SearchInput struct { // The name of the Amazon SageMaker resource to search for. Resource types.ResourceType // How SearchResults are ordered. Valid values are Ascending or Descending. The // default is Descending. SortOrder types.SearchSortOrder // A Boolean conditional statement. Resources must satisfy this condition to be // included in search results. You must provide at least one subexpression, filter, // or nested filter. The maximum number of recursive SubExpressions, NestedFilters, // and Filters that can be included in a SearchExpression object is 50. SearchExpression *types.SearchExpression // The name of the resource property used to sort the SearchResults. The default is // LastModifiedTime. SortBy *string // If more than MaxResults resources match the specified SearchExpression, the // response includes a NextToken. The NextToken can be passed to the next // SearchRequest to continue retrieving results. NextToken *string // The maximum number of results to return. MaxResults *int32 }
type SearchOutput ¶
type SearchOutput struct { // A list of SearchRecord objects. Results []*types.SearchRecord // If the result of the previous Search request was truncated, the response // includes a NextToken. To retrieve the next set of results, use the token in the // next request. NextToken *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StartMonitoringScheduleInput ¶
type StartMonitoringScheduleInput struct { // The name of the schedule to start. MonitoringScheduleName *string }
type StartMonitoringScheduleOutput ¶
type StartMonitoringScheduleOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StartNotebookInstanceInput ¶
type StartNotebookInstanceInput struct { // The name of the notebook instance to start. NotebookInstanceName *string }
type StartNotebookInstanceOutput ¶
type StartNotebookInstanceOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopAutoMLJobInput ¶
type StopAutoMLJobInput struct { // The name of the object you are requesting. AutoMLJobName *string }
type StopAutoMLJobOutput ¶
type StopAutoMLJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopCompilationJobInput ¶
type StopCompilationJobInput struct { // The name of the model compilation job to stop. CompilationJobName *string }
type StopCompilationJobOutput ¶
type StopCompilationJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopHyperParameterTuningJobInput ¶
type StopHyperParameterTuningJobInput struct { // The name of the tuning job to stop. HyperParameterTuningJobName *string }
type StopHyperParameterTuningJobOutput ¶
type StopHyperParameterTuningJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopLabelingJobInput ¶
type StopLabelingJobInput struct { // The name of the labeling job to stop. LabelingJobName *string }
type StopLabelingJobOutput ¶
type StopLabelingJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopMonitoringScheduleInput ¶
type StopMonitoringScheduleInput struct { // The name of the schedule to stop. MonitoringScheduleName *string }
type StopMonitoringScheduleOutput ¶
type StopMonitoringScheduleOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopNotebookInstanceInput ¶
type StopNotebookInstanceInput struct { // The name of the notebook instance to terminate. NotebookInstanceName *string }
type StopNotebookInstanceOutput ¶
type StopNotebookInstanceOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopProcessingJobInput ¶
type StopProcessingJobInput struct { // The name of the processing job to stop. ProcessingJobName *string }
type StopProcessingJobOutput ¶
type StopProcessingJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopTrainingJobInput ¶
type StopTrainingJobInput struct { // The name of the training job to stop. TrainingJobName *string }
type StopTrainingJobOutput ¶
type StopTrainingJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type StopTransformJobInput ¶
type StopTransformJobInput struct { // The name of the transform job to stop. TransformJobName *string }
type StopTransformJobOutput ¶
type StopTransformJobOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateCodeRepositoryInput ¶
type UpdateCodeRepositoryInput struct { // The name of the Git repository to update. CodeRepositoryName *string // The configuration of the git repository, including the URL and the Amazon // Resource Name (ARN) of the AWS Secrets Manager secret that contains the // credentials used to access the repository. The secret must have a staging label // of AWSCURRENT and must be in the following format: {"username": UserName, // "password": Password} GitConfig *types.GitConfigForUpdate }
type UpdateCodeRepositoryOutput ¶
type UpdateCodeRepositoryOutput struct { // The ARN of the Git repository. CodeRepositoryArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateDomainInput ¶
type UpdateDomainInput struct { // The ID of the domain to be updated. DomainId *string // A collection of settings. DefaultUserSettings *types.UserSettings }
type UpdateDomainOutput ¶
type UpdateDomainOutput struct { // The Amazon Resource Name (ARN) of the domain. DomainArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateEndpointInput ¶
type UpdateEndpointInput struct { // The name of the new endpoint configuration. EndpointConfigName *string // When updating endpoint resources, enables or disables the retention of variant // properties, such as the instance count or the variant weight. To retain the // variant properties of an endpoint when updating it, set // RetainAllVariantProperties to true. To use the variant properties specified in a // new EndpointConfig call when updating an endpoint, set // RetainAllVariantProperties to false. RetainAllVariantProperties *bool // When you are updating endpoint resources with // UpdateEndpointInput$RetainAllVariantProperties (), whose value is set to true, // ExcludeRetainedVariantProperties specifies the list of type VariantProperty () // to override with the values provided by EndpointConfig. If you don't specify a // value for ExcludeAllVariantProperties, no variant properties are overridden. ExcludeRetainedVariantProperties []*types.VariantProperty // The name of the endpoint whose configuration you want to update. EndpointName *string }
type UpdateEndpointOutput ¶
type UpdateEndpointOutput struct { // The Amazon Resource Name (ARN) of the endpoint. EndpointArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateEndpointWeightsAndCapacitiesInput ¶
type UpdateEndpointWeightsAndCapacitiesInput struct { // The name of an existing Amazon SageMaker endpoint. EndpointName *string // An object that provides new capacity and weight values for a variant. DesiredWeightsAndCapacities []*types.DesiredWeightAndCapacity }
type UpdateEndpointWeightsAndCapacitiesOutput ¶
type UpdateEndpointWeightsAndCapacitiesOutput struct { // The Amazon Resource Name (ARN) of the updated endpoint. EndpointArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateExperimentInput ¶
type UpdateExperimentInput struct { // The description of the experiment. Description *string // The name of the experiment to update. ExperimentName *string // The name of the experiment as displayed. The name doesn't need to be unique. If // DisplayName isn't specified, ExperimentName is displayed. DisplayName *string }
type UpdateExperimentOutput ¶
type UpdateExperimentOutput struct { // The Amazon Resource Name (ARN) of the experiment. ExperimentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateMonitoringScheduleInput ¶
type UpdateMonitoringScheduleInput struct { // The name of the monitoring schedule. The name must be unique within an AWS // Region within an AWS account. MonitoringScheduleName *string // The configuration object that specifies the monitoring schedule and defines the // monitoring job. MonitoringScheduleConfig *types.MonitoringScheduleConfig }
type UpdateMonitoringScheduleOutput ¶
type UpdateMonitoringScheduleOutput struct { // The Amazon Resource Name (ARN) of the monitoring schedule. MonitoringScheduleArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateNotebookInstanceInput ¶
type UpdateNotebookInstanceInput struct { // A list of the Elastic Inference (EI) instance types to remove from this notebook // instance. This operation is idempotent. If you specify an accelerator type that // is not associated with the notebook instance when you call this method, it does // not throw an error. DisassociateAcceleratorTypes *bool // The Amazon ML compute instance type. InstanceType types.InstanceType // The name of the notebook instance to update. NotebookInstanceName *string // The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume // to access the notebook instance. For more information, see Amazon SageMaker // Roles (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html). To // be able to pass this role to Amazon SageMaker, the caller of this API must have // the iam:PassRole permission. RoleArn *string // Set to true to remove the notebook instance lifecycle configuration currently // associated with the notebook instance. This operation is idempotent. If you // specify a lifecycle configuration that is not associated with the notebook // instance when you call this method, it does not throw an error. DisassociateLifecycleConfig *bool // The Git repository to associate with the notebook instance as its default code // repository. This can be either the name of a Git repository stored as a resource // in your account, or the URL of a Git repository in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. When you open a notebook instance, it opens in the // directory that contains this repository. For more information, see Associating // Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). DefaultCodeRepository *string // An array of up to three Git repositories to associate with the notebook // instance. These can be either the names of Git repositories stored as resources // in your account, or the URL of Git repositories in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. These repositories are cloned at the same level as the // default repository of your notebook instance. For more information, see // Associating Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). AdditionalCodeRepositories []*string // A list of the Elastic Inference (EI) instance types to associate with this // notebook instance. Currently only one EI instance type can be associated with a // notebook instance. For more information, see Using Elastic Inference in Amazon // SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html). AcceleratorTypes []types.NotebookInstanceAcceleratorType // The name of a lifecycle configuration to associate with the notebook instance. // For information about lifestyle configurations, see Step 2.1: (Optional) // Customize a Notebook Instance // (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html). LifecycleConfigName *string // The name or URL of the default Git repository to remove from this notebook // instance. This operation is idempotent. If you specify a Git repository that is // not associated with the notebook instance when you call this method, it does not // throw an error. DisassociateDefaultCodeRepository *bool // A list of names or URLs of the default Git repositories to remove from this // notebook instance. This operation is idempotent. If you specify a Git repository // that is not associated with the notebook instance when you call this method, it // does not throw an error. DisassociateAdditionalCodeRepositories *bool // Whether root access is enabled or disabled for users of the notebook instance. // The default value is Enabled. If you set this to Disabled, users don't have root // access on the notebook instance, but lifecycle configuration scripts still run // with root permissions. RootAccess types.RootAccess // The size, in GB, of the ML storage volume to attach to the notebook instance. // The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker // can't determine the amount of available free space on the volume. Because of // this, you can increase the volume size when you update a notebook instance, but // you can't decrease the volume size. If you want to decrease the size of the ML // storage volume in use, create a new notebook instance with the desired size. VolumeSizeInGB *int32 }
type UpdateNotebookInstanceLifecycleConfigInput ¶
type UpdateNotebookInstanceLifecycleConfigInput struct { // The shell script that runs every time you start a notebook instance, including // when you create the notebook instance. The shell script must be a base64-encoded // string. OnStart []*types.NotebookInstanceLifecycleHook // The shell script that runs only once, when you create a notebook instance. The // shell script must be a base64-encoded string. OnCreate []*types.NotebookInstanceLifecycleHook // The name of the lifecycle configuration. NotebookInstanceLifecycleConfigName *string }
type UpdateNotebookInstanceLifecycleConfigOutput ¶
type UpdateNotebookInstanceLifecycleConfigOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateNotebookInstanceOutput ¶
type UpdateNotebookInstanceOutput struct { // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateTrialComponentInput ¶
type UpdateTrialComponentInput struct { // Replaces all of the component's hyperparameters with the specified // hyperparameters. Parameters map[string]*types.TrialComponentParameterValue // The output artifacts to remove from the component. OutputArtifactsToRemove []*string // The new status of the component. Status *types.TrialComponentStatus // Replaces all of the component's input artifacts with the specified artifacts. InputArtifacts map[string]*types.TrialComponentArtifact // The input artifacts to remove from the component. InputArtifactsToRemove []*string // Replaces all of the component's output artifacts with the specified artifacts. OutputArtifacts map[string]*types.TrialComponentArtifact // The hyperparameters to remove from the component. ParametersToRemove []*string // When the component started. StartTime *time.Time // The name of the component to update. TrialComponentName *string // When the component ended. EndTime *time.Time // The name of the component as displayed. The name doesn't need to be unique. If // DisplayName isn't specified, TrialComponentName is displayed. DisplayName *string }
type UpdateTrialComponentOutput ¶
type UpdateTrialComponentOutput struct { // The Amazon Resource Name (ARN) of the trial component. TrialComponentArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateTrialInput ¶
type UpdateTrialInput struct { // The name of the trial to update. TrialName *string // The name of the trial as displayed. The name doesn't need to be unique. If // DisplayName isn't specified, TrialName is displayed. DisplayName *string }
type UpdateTrialOutput ¶
type UpdateTrialOutput struct { // The Amazon Resource Name (ARN) of the trial. TrialArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateUserProfileInput ¶
type UpdateUserProfileInput struct { // The domain ID. DomainId *string // The user profile name. UserProfileName *string // A collection of settings. UserSettings *types.UserSettings }
type UpdateUserProfileOutput ¶
type UpdateUserProfileOutput struct { // The user profile Amazon Resource Name (ARN). UserProfileArn *string // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateWorkforceInput ¶
type UpdateWorkforceInput struct { // Use this parameter to update your OIDC Identity Provider (IdP) configuration for // a workforce made using your own IdP. OidcConfig *types.OidcConfig // The name of the private workforce whose access you want to restrict. // WorkforceName is automatically set to default when a workforce is created and // cannot be modified. WorkforceName *string // A list of one to ten worker IP address ranges (CIDRs // (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)) that can be // used to access tasks assigned to this workforce. Maximum: Ten CIDR values SourceIpConfig *types.SourceIpConfig }
type UpdateWorkforceOutput ¶
type UpdateWorkforceOutput struct { // A single private workforce, which is automatically created when you create your // first private work team. You can create one private work force in each AWS // Region. By default, any workforce-related API operation used in a specific // region will apply to the workforce created in that region. To learn how to // create a private workforce, see Create a Private Workforce // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html). Workforce *types.Workforce // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
type UpdateWorkteamInput ¶
type UpdateWorkteamInput struct { // A list of MemberDefinition objects that contain the updated work team members. MemberDefinitions []*types.MemberDefinition // The name of the work team to update. WorkteamName *string // An updated description for the work team. Description *string // Configures SNS topic notifications for available or expiring work items NotificationConfiguration *types.NotificationConfiguration }
type UpdateWorkteamOutput ¶
type UpdateWorkteamOutput struct { // A Workteam object that describes the updated work team. Workteam *types.Workteam // Metadata pertaining to the operation's result. ResultMetadata middleware.Metadata }
Source Files ¶
api_client.go api_op_AddTags.go api_op_AssociateTrialComponent.go api_op_CreateAlgorithm.go api_op_CreateApp.go api_op_CreateAutoMLJob.go api_op_CreateCodeRepository.go api_op_CreateCompilationJob.go api_op_CreateDomain.go api_op_CreateEndpoint.go api_op_CreateEndpointConfig.go api_op_CreateExperiment.go api_op_CreateFlowDefinition.go api_op_CreateHumanTaskUi.go api_op_CreateHyperParameterTuningJob.go api_op_CreateLabelingJob.go api_op_CreateModel.go api_op_CreateModelPackage.go api_op_CreateMonitoringSchedule.go api_op_CreateNotebookInstance.go api_op_CreateNotebookInstanceLifecycleConfig.go api_op_CreatePresignedDomainUrl.go api_op_CreatePresignedNotebookInstanceUrl.go api_op_CreateProcessingJob.go api_op_CreateTrainingJob.go api_op_CreateTransformJob.go api_op_CreateTrial.go api_op_CreateTrialComponent.go api_op_CreateUserProfile.go api_op_CreateWorkforce.go api_op_CreateWorkteam.go api_op_DeleteAlgorithm.go api_op_DeleteApp.go api_op_DeleteCodeRepository.go api_op_DeleteDomain.go api_op_DeleteEndpoint.go api_op_DeleteEndpointConfig.go api_op_DeleteExperiment.go api_op_DeleteFlowDefinition.go api_op_DeleteHumanTaskUi.go api_op_DeleteModel.go api_op_DeleteModelPackage.go api_op_DeleteMonitoringSchedule.go api_op_DeleteNotebookInstance.go api_op_DeleteNotebookInstanceLifecycleConfig.go api_op_DeleteTags.go api_op_DeleteTrial.go api_op_DeleteTrialComponent.go api_op_DeleteUserProfile.go api_op_DeleteWorkforce.go api_op_DeleteWorkteam.go api_op_DescribeAlgorithm.go api_op_DescribeApp.go api_op_DescribeAutoMLJob.go api_op_DescribeCodeRepository.go api_op_DescribeCompilationJob.go api_op_DescribeDomain.go api_op_DescribeEndpoint.go api_op_DescribeEndpointConfig.go api_op_DescribeExperiment.go api_op_DescribeFlowDefinition.go api_op_DescribeHumanTaskUi.go api_op_DescribeHyperParameterTuningJob.go api_op_DescribeLabelingJob.go api_op_DescribeModel.go api_op_DescribeModelPackage.go api_op_DescribeMonitoringSchedule.go api_op_DescribeNotebookInstance.go api_op_DescribeNotebookInstanceLifecycleConfig.go api_op_DescribeProcessingJob.go api_op_DescribeSubscribedWorkteam.go api_op_DescribeTrainingJob.go api_op_DescribeTransformJob.go api_op_DescribeTrial.go api_op_DescribeTrialComponent.go api_op_DescribeUserProfile.go api_op_DescribeWorkforce.go api_op_DescribeWorkteam.go api_op_DisassociateTrialComponent.go api_op_GetSearchSuggestions.go api_op_ListAlgorithms.go api_op_ListApps.go api_op_ListAutoMLJobs.go api_op_ListCandidatesForAutoMLJob.go api_op_ListCodeRepositories.go api_op_ListCompilationJobs.go api_op_ListDomains.go api_op_ListEndpointConfigs.go api_op_ListEndpoints.go api_op_ListExperiments.go api_op_ListFlowDefinitions.go api_op_ListHumanTaskUis.go api_op_ListHyperParameterTuningJobs.go api_op_ListLabelingJobs.go api_op_ListLabelingJobsForWorkteam.go api_op_ListModelPackages.go api_op_ListModels.go api_op_ListMonitoringExecutions.go api_op_ListMonitoringSchedules.go api_op_ListNotebookInstanceLifecycleConfigs.go api_op_ListNotebookInstances.go api_op_ListProcessingJobs.go api_op_ListSubscribedWorkteams.go api_op_ListTags.go api_op_ListTrainingJobs.go api_op_ListTrainingJobsForHyperParameterTuningJob.go api_op_ListTransformJobs.go api_op_ListTrialComponents.go api_op_ListTrials.go api_op_ListUserProfiles.go api_op_ListWorkforces.go api_op_ListWorkteams.go api_op_RenderUiTemplate.go api_op_Search.go api_op_StartMonitoringSchedule.go api_op_StartNotebookInstance.go api_op_StopAutoMLJob.go api_op_StopCompilationJob.go api_op_StopHyperParameterTuningJob.go api_op_StopLabelingJob.go api_op_StopMonitoringSchedule.go api_op_StopNotebookInstance.go api_op_StopProcessingJob.go api_op_StopTrainingJob.go api_op_StopTransformJob.go api_op_UpdateCodeRepository.go api_op_UpdateDomain.go api_op_UpdateEndpoint.go api_op_UpdateEndpointWeightsAndCapacities.go api_op_UpdateExperiment.go api_op_UpdateMonitoringSchedule.go api_op_UpdateNotebookInstance.go api_op_UpdateNotebookInstanceLifecycleConfig.go api_op_UpdateTrial.go api_op_UpdateTrialComponent.go api_op_UpdateUserProfile.go api_op_UpdateWorkforce.go api_op_UpdateWorkteam.go deserializers.go endpoints.go serializers.go validators.go
Directories ¶
Path | Synopsis |
---|---|
internal | |
types |
- Version
- v0.1.0
- Published
- Sep 29, 2020
- Platform
- js/wasm
- Imports
- 26 packages
- Last checked
- 1 second ago –
Tools for package owners.