package types

import "github.com/aws/aws-sdk-go-v2/service/sagemaker/types"

Index

Types

type AlgorithmSortBy

type AlgorithmSortBy string
const (
	AlgorithmSortByName          AlgorithmSortBy = "Name"
	AlgorithmSortByCreation_time AlgorithmSortBy = "CreationTime"
)

Enum values for AlgorithmSortBy

type AlgorithmSpecification

type AlgorithmSpecification struct {

	// The input mode that the algorithm supports. For the input modes that Amazon
	// SageMaker algorithms support, see Algorithms
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). If an algorithm
	// supports the File input mode, Amazon SageMaker downloads the training data from
	// S3 to the provisioned ML storage Volume, and mounts the directory to docker
	// volume for training container. If an algorithm supports the Pipe input mode,
	// Amazon SageMaker streams data directly from S3 to the container. In File mode,
	// make sure you provision ML storage volume with sufficient capacity to
	// accommodate the data download from S3. In addition to the training data, the ML
	// storage volume also stores the output model. The algorithm container use ML
	// storage volume to also store intermediate information, if any. For distributed
	// algorithms using File mode, training data is distributed uniformly, and your
	// training duration is predictable if the input data objects size is approximately
	// same. Amazon SageMaker does not split the files any further for model training.
	// If the object sizes are skewed, training won't be optimal as the data
	// distribution is also skewed where one host in a training cluster is overloaded,
	// thus becoming bottleneck in training.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the algorithm resource to use for the training job. This must be an
	// algorithm resource that you created or subscribe to on AWS Marketplace. If you
	// specify a value for this parameter, you can't specify a value for TrainingImage.
	AlgorithmName *string

	// To generate and save time-series metrics during training, set to true. The
	// default is false and time-series metrics aren't generated except in the
	// following cases:
	//
	//     * You use one of the Amazon SageMaker built-in
	// algorithms
	//
	//     * You use one of the following Prebuilt Amazon SageMaker Docker
	// Images
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html):
	//
	//
	// * Tensorflow (version >= 1.15)
	//
	//         * MXNet (version >= 1.6)
	//
	//         *
	// PyTorch (version >= 1.3)
	//
	//     * You specify at least one MetricDefinition
	EnableSageMakerMetricsTimeSeries *bool

	// A list of metric definition objects. Each object specifies the metric name and
	// regular expressions used to parse algorithm logs. Amazon SageMaker publishes
	// each metric to Amazon CloudWatch.
	MetricDefinitions []*MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about docker registry paths for built-in algorithms, see Algorithms
	// Provided by Amazon SageMaker: Common Parameters
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html).
	// Amazon SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see Using
	// Your Own Algorithms with Amazon SageMaker
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
	TrainingImage *string
}

Specifies the training algorithm to use in a CreateTrainingJob request. For more information about algorithms provided by Amazon SageMaker, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).

type AlgorithmStatus

type AlgorithmStatus string
const (
	AlgorithmStatusPending     AlgorithmStatus = "Pending"
	AlgorithmStatusIn_progress AlgorithmStatus = "InProgress"
	AlgorithmStatusCompleted   AlgorithmStatus = "Completed"
	AlgorithmStatusFailed      AlgorithmStatus = "Failed"
	AlgorithmStatusDeleting    AlgorithmStatus = "Deleting"
)

Enum values for AlgorithmStatus

type AlgorithmStatusDetails

type AlgorithmStatusDetails struct {

	// The status of the scan of the algorithm's Docker image container.
	ImageScanStatuses []*AlgorithmStatusItem

	// The status of algorithm validation.
	ValidationStatuses []*AlgorithmStatusItem
}

Specifies the validation and image scan statuses of the algorithm.

type AlgorithmStatusItem

type AlgorithmStatusItem struct {

	// The name of the algorithm for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedAlgorithmStatus

	// if the overall status is Failed, the reason for the failure.
	FailureReason *string
}

Represents the overall status of an algorithm.

type AlgorithmSummary

type AlgorithmSummary struct {

	// The Amazon Resource Name (ARN) of the algorithm.
	//
	// This member is required.
	AlgorithmArn *string

	// The name of the algorithm that is described by the summary.
	//
	// This member is required.
	AlgorithmName *string

	// The overall status of the algorithm.
	//
	// This member is required.
	AlgorithmStatus AlgorithmStatus

	// A timestamp that shows when the algorithm was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A brief description of the algorithm.
	AlgorithmDescription *string
}

Provides summary information about an algorithm.

type AlgorithmValidationProfile

type AlgorithmValidationProfile struct {

	// The name of the profile for the algorithm. The name must have 1 to 63
	// characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
	//
	// This member is required.
	ProfileName *string

	// The TrainingJobDefinition object that describes the training job that Amazon
	// SageMaker runs to validate your algorithm.
	//
	// This member is required.
	TrainingJobDefinition *TrainingJobDefinition

	// The TransformJobDefinition object that describes the transform job that Amazon
	// SageMaker runs to validate your algorithm.
	TransformJobDefinition *TransformJobDefinition
}

Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm. The data provided in the validation profile is made available to your buyers on AWS Marketplace.

type AlgorithmValidationSpecification

type AlgorithmValidationSpecification struct {

	// An array of AlgorithmValidationProfile objects, each of which specifies a
	// training job and batch transform job that Amazon SageMaker runs to validate your
	// algorithm.
	//
	// This member is required.
	ValidationProfiles []*AlgorithmValidationProfile

	// The IAM roles that Amazon SageMaker uses to run the training jobs.
	//
	// This member is required.
	ValidationRole *string
}

Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.

type AnnotationConsolidationConfig

type AnnotationConsolidationConfig struct {

	// The Amazon Resource Name (ARN) of a Lambda function implements the logic for
	// annotation consolidation
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
	// and to process output data. This parameter is required for all labeling jobs.
	// For built-in task types
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html), use one
	// of the following Amazon SageMaker Ground Truth Lambda function ARNs for
	// AnnotationConsolidationLambdaArn. For custom labeling workflows, see
	// Post-annotation Lambda
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda).
	// Bounding box - Finds the most similar boxes from different workers based on the
	// Jaccard index of the boxes.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBoxarn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBoxarn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBoxarn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBoxarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBoxarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBoxarn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBoxarn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBoxarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBoxarn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBoxarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBoxarn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
	//
	// Image
	// classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true class of an image based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassarn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassarn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassarn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassarn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassarn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassarn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassarn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
	//
	// Multi-label
	// image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true classes of an image based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabelarn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
	//
	// Semantic
	// segmentation - Treats each pixel in an image as a multi-class classification and
	// treats pixel annotations from workers as "votes" for the correct label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentationarn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentationarn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentationarn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentationarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentationarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentationarn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentationarn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentationarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentationarn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentationarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentationarn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
	//
	// Text
	// classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true class of text based on annotations from individual workers.
	//
	//
	// *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassarn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassarn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassarn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassarn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassarn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassarn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassarn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
	//
	// Multi-label
	// text classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true classes of text based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabelarn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
	//
	// Named
	// entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognitionarn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognitionarn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognitionarn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
	//
	// Named
	// entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognitionarn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognitionarn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognitionarn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognitionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognitionarn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
	//
	// Video
	// Classification - Use this task type when you need workers to classify videos
	// using predefined labels that you specify. Workers are shown videos and are asked
	// to choose one label for each video.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClassarn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClassarn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClassarn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClassarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClassarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClassarn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClassarn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClassarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClassarn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClassarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClassarn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
	//
	// Video
	// Frame Object Detection - Use this task type to have workers identify and locate
	// objects in a sequence of video frames (images extracted from a video) using
	// bounding boxes. For example, you can use this task to ask workers to identify
	// and localize various objects in a series of video frames, such as cars, bikes,
	// and pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetectionarn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetectionarn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetectionarn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetectionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetectionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetectionarn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetectionarn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetectionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetectionarn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetectionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetectionarn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
	//
	// Video
	// Frame Object Tracking - Use this task type to have workers track the movement of
	// objects in a sequence of video frames (images extracted from a video) using
	// bounding boxes. For example, you can use this task to ask workers to track the
	// movement of objects, such as cars, bikes, and pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTrackingarn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTrackingarn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTrackingarn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTrackingarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTrackingarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTrackingarn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTrackingarn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTrackingarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTrackingarn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTrackingarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTrackingarn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
	//
	// 3D
	// point cloud object detection - Use this task type when you want workers to
	// classify objects in a 3D point cloud by drawing 3D cuboids around objects. For
	// example, you can use this task type to ask workers to identify different types
	// of objects in a point cloud, such as cars, bikes, and pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetectionarn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
	//
	// 3D
	// point cloud object tracking - Use this task type when you want workers to draw
	// 3D cuboids around objects that appear in a sequence of 3D point cloud frames.
	// For example, you can use this task type to ask workers to track the movement of
	// vehicles across multiple point cloud frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTrackingarn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
	//
	// 3D
	// point cloud semantic segmentation - Use this task type when you want workers to
	// create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentationarn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
	//
	// Use
	// the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html).
	// Semantic segmentation adjustment - Treats each pixel in an image as a
	// multi-class classification and treats pixel adjusted annotations from workers as
	// "votes" for the correct label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentationarn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
	//
	// Semantic
	// segmentation verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgment for semantic
	// segmentation labels based on annotations from individual workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentationarn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
	//
	// Bounding
	// box verification - Uses a variant of the Expectation Maximization approach to
	// estimate the true class of verification judgement for bounding box labels based
	// on annotations from individual workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBoxarn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBoxarn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBoxarn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBoxarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBoxarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBoxarn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBoxarn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBoxarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBoxarn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBoxarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBoxarn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
	//
	// Bounding
	// box adjustment - Finds the most similar boxes from different workers based on
	// the Jaccard index of the adjusted annotations.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBoxarn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
	//
	// Video
	// Frame Object Detection Adjustment - Use this task type when you want workers to
	// adjust bounding boxes that workers have added to video frames to classify and
	// localize objects in a sequence of video frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetectionarn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
	//
	// Video
	// Frame Object Tracking Adjustment - Use this task type when you want workers to
	// adjust bounding boxes that workers have added to video frames to track object
	// movement across a sequence of video frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTrackingarn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
	//
	// 3D
	// point cloud object detection adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects in a 3D point cloud.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetectionarn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
	//
	// 3D
	// point cloud object tracking adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects that appear in a sequence of 3D
	// point cloud frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTrackingarn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
	//
	// 3D
	// point cloud semantic segmentation adjustment - Use this task type when you want
	// workers to adjust a point-level semantic segmentation masks using a paint
	// tool.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentationarn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	AnnotationConsolidationLambdaArn *string
}

Configures how labels are consolidated across human workers and processes output data.

type AppDetails

type AppDetails struct {

	// The name of the app.
	AppName *string

	// The type of app.
	AppType AppType

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// The status.
	Status AppStatus

	// The user profile name.
	UserProfileName *string
}

The app's details.

type AppInstanceType

type AppInstanceType string
const (
	AppInstanceTypeSystem           AppInstanceType = "system"
	AppInstanceTypeMl_t3_micro      AppInstanceType = "ml.t3.micro"
	AppInstanceTypeMl_t3_small      AppInstanceType = "ml.t3.small"
	AppInstanceTypeMl_t3_medium     AppInstanceType = "ml.t3.medium"
	AppInstanceTypeMl_t3_large      AppInstanceType = "ml.t3.large"
	AppInstanceTypeMl_t3_xlarge     AppInstanceType = "ml.t3.xlarge"
	AppInstanceTypeMl_t3_2xlarge    AppInstanceType = "ml.t3.2xlarge"
	AppInstanceTypeMl_m5_large      AppInstanceType = "ml.m5.large"
	AppInstanceTypeMl_m5_xlarge     AppInstanceType = "ml.m5.xlarge"
	AppInstanceTypeMl_m5_2xlarge    AppInstanceType = "ml.m5.2xlarge"
	AppInstanceTypeMl_m5_4xlarge    AppInstanceType = "ml.m5.4xlarge"
	AppInstanceTypeMl_m5_8xlarge    AppInstanceType = "ml.m5.8xlarge"
	AppInstanceTypeMl_m5_12xlarge   AppInstanceType = "ml.m5.12xlarge"
	AppInstanceTypeMl_m5_16xlarge   AppInstanceType = "ml.m5.16xlarge"
	AppInstanceTypeMl_m5_24xlarge   AppInstanceType = "ml.m5.24xlarge"
	AppInstanceTypeMl_c5_large      AppInstanceType = "ml.c5.large"
	AppInstanceTypeMl_c5_xlarge     AppInstanceType = "ml.c5.xlarge"
	AppInstanceTypeMl_c5_2xlarge    AppInstanceType = "ml.c5.2xlarge"
	AppInstanceTypeMl_c5_4xlarge    AppInstanceType = "ml.c5.4xlarge"
	AppInstanceTypeMl_c5_9xlarge    AppInstanceType = "ml.c5.9xlarge"
	AppInstanceTypeMl_c5_12xlarge   AppInstanceType = "ml.c5.12xlarge"
	AppInstanceTypeMl_c5_18xlarge   AppInstanceType = "ml.c5.18xlarge"
	AppInstanceTypeMl_c5_24xlarge   AppInstanceType = "ml.c5.24xlarge"
	AppInstanceTypeMl_p3_2xlarge    AppInstanceType = "ml.p3.2xlarge"
	AppInstanceTypeMl_p3_8xlarge    AppInstanceType = "ml.p3.8xlarge"
	AppInstanceTypeMl_p3_16xlarge   AppInstanceType = "ml.p3.16xlarge"
	AppInstanceTypeMl_g4dn_xlarge   AppInstanceType = "ml.g4dn.xlarge"
	AppInstanceTypeMl_g4dn_2xlarge  AppInstanceType = "ml.g4dn.2xlarge"
	AppInstanceTypeMl_g4dn_4xlarge  AppInstanceType = "ml.g4dn.4xlarge"
	AppInstanceTypeMl_g4dn_8xlarge  AppInstanceType = "ml.g4dn.8xlarge"
	AppInstanceTypeMl_g4dn_12xlarge AppInstanceType = "ml.g4dn.12xlarge"
	AppInstanceTypeMl_g4dn_16xlarge AppInstanceType = "ml.g4dn.16xlarge"
)

Enum values for AppInstanceType

type AppSortKey

type AppSortKey string
const (
	AppSortKeyCreationtime AppSortKey = "CreationTime"
)

Enum values for AppSortKey

type AppSpecification

type AppSpecification struct {

	// The container image to be run by the processing job.
	//
	// This member is required.
	ImageUri *string

	// The arguments for a container used to run a processing job.
	ContainerArguments []*string

	// The entrypoint for a container used to run a processing job.
	ContainerEntrypoint []*string
}

Configuration to run a processing job in a specified container image.

type AppStatus

type AppStatus string
const (
	AppStatusDeleted   AppStatus = "Deleted"
	AppStatusDeleting  AppStatus = "Deleting"
	AppStatusFailed    AppStatus = "Failed"
	AppStatusInservice AppStatus = "InService"
	AppStatusPending   AppStatus = "Pending"
)

Enum values for AppStatus

type AppType

type AppType string
const (
	AppTypeJupyterserver AppType = "JupyterServer"
	AppTypeKernelgateway AppType = "KernelGateway"
	AppTypeTensorboard   AppType = "TensorBoard"
)

Enum values for AppType

type AssemblyType

type AssemblyType string
const (
	AssemblyTypeNone AssemblyType = "None"
	AssemblyTypeLine AssemblyType = "Line"
)

Enum values for AssemblyType

type AuthMode

type AuthMode string
const (
	AuthModeSso AuthMode = "SSO"
	AuthModeIam AuthMode = "IAM"
)

Enum values for AuthMode

type AutoMLCandidate

type AutoMLCandidate struct {

	// The candidate name.
	//
	// This member is required.
	CandidateName *string

	// The candidate's status.
	//
	// This member is required.
	CandidateStatus CandidateStatus

	// The candidate's steps.
	//
	// This member is required.
	CandidateSteps []*AutoMLCandidateStep

	// The creation time.
	//
	// This member is required.
	CreationTime *time.Time

	// The last modified time.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The objective status.
	//
	// This member is required.
	ObjectiveStatus ObjectiveStatus

	// The end time.
	EndTime *time.Time

	// The failure reason.
	FailureReason *string

	// The candidate result from a job.
	FinalAutoMLJobObjectiveMetric *FinalAutoMLJobObjectiveMetric

	// The inference containers.
	InferenceContainers []*AutoMLContainerDefinition
}

An AutoPilot job will return recommendations, or candidates. Each candidate has futher details about the steps involed, and the status.

type AutoMLCandidateStep

type AutoMLCandidateStep struct {

	// The ARN for the Candidate's step.
	//
	// This member is required.
	CandidateStepArn *string

	// The name for the Candidate's step.
	//
	// This member is required.
	CandidateStepName *string

	// Whether the Candidate is at the transform, training, or processing step.
	//
	// This member is required.
	CandidateStepType CandidateStepType
}

Information about the steps for a Candidate, and what step it is working on.

type AutoMLChannel

type AutoMLChannel struct {

	// The data source.
	//
	// This member is required.
	DataSource *AutoMLDataSource

	// The name of the target variable in supervised learning, a.k.a. 'y'.
	//
	// This member is required.
	TargetAttributeName *string

	// You can use Gzip or None. The default value is None.
	CompressionType CompressionType
}

Similar to Channel. A channel is a named input source that training algorithms can consume. Refer to Channel for detailed descriptions.

type AutoMLContainerDefinition

type AutoMLContainerDefinition struct {

	// The ECR path of the container. Refer to ContainerDefinition for more details.
	//
	// This member is required.
	Image *string

	// The location of the model artifacts. Refer to ContainerDefinition for more
	// details.
	//
	// This member is required.
	ModelDataUrl *string

	// Environment variables to set in the container. Refer to ContainerDefinition for
	// more details.
	Environment map[string]*string
}

A list of container definitions that describe the different containers that make up one AutoML candidate. Refer to ContainerDefinition for more details.

type AutoMLDataSource

type AutoMLDataSource struct {

	// The Amazon S3 location of the input data. The input data must be in CSV format
	// and contain at least 1000 rows.
	//
	// This member is required.
	S3DataSource *AutoMLS3DataSource
}

The data source for the AutoPilot job.

type AutoMLJobArtifacts

type AutoMLJobArtifacts struct {

	// The URL to the notebook location.
	CandidateDefinitionNotebookLocation *string

	// The URL to the notebook location.
	DataExplorationNotebookLocation *string
}

Artifacts that are generation during a job.

type AutoMLJobCompletionCriteria

type AutoMLJobCompletionCriteria struct {

	// The maximum time, in seconds, an AutoML job is allowed to wait for a trial to
	// complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.
	MaxAutoMLJobRuntimeInSeconds *int32

	// The maximum number of times a training job is allowed to run.
	MaxCandidates *int32

	// The maximum time, in seconds, a job is allowed to run.
	MaxRuntimePerTrainingJobInSeconds *int32
}

How long a job is allowed to run, or how many candidates a job is allowed to generate.

type AutoMLJobConfig

type AutoMLJobConfig struct {

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// Security configuration for traffic encryption or Amazon VPC settings.
	SecurityConfig *AutoMLSecurityConfig
}

A collection of settings used for a job.

type AutoMLJobObjective

type AutoMLJobObjective struct {

	// The name of the metric.
	//
	// This member is required.
	MetricName AutoMLMetricEnum
}

Applies a metric to minimize or maximize for the job's objective.

type AutoMLJobObjectiveType

type AutoMLJobObjectiveType string
const (
	AutoMLJobObjectiveTypeMaximize AutoMLJobObjectiveType = "Maximize"
	AutoMLJobObjectiveTypeMinimize AutoMLJobObjectiveType = "Minimize"
)

Enum values for AutoMLJobObjectiveType

type AutoMLJobSecondaryStatus

type AutoMLJobSecondaryStatus string
const (
	AutoMLJobSecondaryStatusStarting                        AutoMLJobSecondaryStatus = "Starting"
	AutoMLJobSecondaryStatusAnalyzing_data                  AutoMLJobSecondaryStatus = "AnalyzingData"
	AutoMLJobSecondaryStatusFeature_engineering             AutoMLJobSecondaryStatus = "FeatureEngineering"
	AutoMLJobSecondaryStatusModel_tuning                    AutoMLJobSecondaryStatus = "ModelTuning"
	AutoMLJobSecondaryStatusMax_candidates_reached          AutoMLJobSecondaryStatus = "MaxCandidatesReached"
	AutoMLJobSecondaryStatusFailed                          AutoMLJobSecondaryStatus = "Failed"
	AutoMLJobSecondaryStatusStopped                         AutoMLJobSecondaryStatus = "Stopped"
	AutoMLJobSecondaryStatusMax_auto_ml_job_runtime_reached AutoMLJobSecondaryStatus = "MaxAutoMLJobRuntimeReached"
	AutoMLJobSecondaryStatusStopping                        AutoMLJobSecondaryStatus = "Stopping"
	AutoMLJobSecondaryStatusCandidate_definitions_generated AutoMLJobSecondaryStatus = "CandidateDefinitionsGenerated"
)

Enum values for AutoMLJobSecondaryStatus

type AutoMLJobStatus

type AutoMLJobStatus string
const (
	AutoMLJobStatusCompleted   AutoMLJobStatus = "Completed"
	AutoMLJobStatusIn_progress AutoMLJobStatus = "InProgress"
	AutoMLJobStatusFailed      AutoMLJobStatus = "Failed"
	AutoMLJobStatusStopped     AutoMLJobStatus = "Stopped"
	AutoMLJobStatusStopping    AutoMLJobStatus = "Stopping"
)

Enum values for AutoMLJobStatus

type AutoMLJobSummary

type AutoMLJobSummary struct {

	// The ARN of the job.
	//
	// This member is required.
	AutoMLJobArn *string

	// The name of the object you are requesting.
	//
	// This member is required.
	AutoMLJobName *string

	// The job's secondary status.
	//
	// This member is required.
	AutoMLJobSecondaryStatus AutoMLJobSecondaryStatus

	// The job's status.
	//
	// This member is required.
	AutoMLJobStatus AutoMLJobStatus

	// When the job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// When the job was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The end time.
	EndTime *time.Time

	// The failure reason.
	FailureReason *string
}

Provides a summary about a job.

type AutoMLMetricEnum

type AutoMLMetricEnum string
const (
	AutoMLMetricEnumAccuracy AutoMLMetricEnum = "Accuracy"
	AutoMLMetricEnumMse      AutoMLMetricEnum = "MSE"
	AutoMLMetricEnumF1       AutoMLMetricEnum = "F1"
	AutoMLMetricEnumF1_macro AutoMLMetricEnum = "F1macro"
)

Enum values for AutoMLMetricEnum

type AutoMLOutputDataConfig

type AutoMLOutputDataConfig struct {

	// The Amazon S3 output path. Must be 128 characters or less.
	//
	// This member is required.
	S3OutputPath *string

	// The AWS KMS encryption key ID.
	KmsKeyId *string
}

The output data configuration.

type AutoMLS3DataSource

type AutoMLS3DataSource struct {

	// The data type.
	//
	// This member is required.
	S3DataType AutoMLS3DataType

	// The URL to the Amazon S3 data source.
	//
	// This member is required.
	S3Uri *string
}

The Amazon S3 data source.

type AutoMLS3DataType

type AutoMLS3DataType string
const (
	AutoMLS3DataTypeManifest_file AutoMLS3DataType = "ManifestFile"
	AutoMLS3DataTypeS3_prefix     AutoMLS3DataType = "S3Prefix"
)

Enum values for AutoMLS3DataType

type AutoMLSecurityConfig

type AutoMLSecurityConfig struct {

	// Whether to use traffic encryption between the container layers.
	EnableInterContainerTrafficEncryption *bool

	// The key used to encrypt stored data.
	VolumeKmsKeyId *string

	// VPC configuration.
	VpcConfig *VpcConfig
}

Security options.

type AutoMLSortBy

type AutoMLSortBy string
const (
	AutoMLSortByName          AutoMLSortBy = "Name"
	AutoMLSortByCreation_time AutoMLSortBy = "CreationTime"
	AutoMLSortByStatus        AutoMLSortBy = "Status"
)

Enum values for AutoMLSortBy

type AutoMLSortOrder

type AutoMLSortOrder string
const (
	AutoMLSortOrderAscending  AutoMLSortOrder = "Ascending"
	AutoMLSortOrderDescending AutoMLSortOrder = "Descending"
)

Enum values for AutoMLSortOrder

type AwsManagedHumanLoopRequestSource

type AwsManagedHumanLoopRequestSource string
const (
	AwsManagedHumanLoopRequestSourceRekognition_detect_moderation_labels_image_v3 AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"
	AwsManagedHumanLoopRequestSourceTextract_analyze_document_forms_v1            AwsManagedHumanLoopRequestSource = "AWS/Textract/AnalyzeDocument/Forms/V1"
)

Enum values for AwsManagedHumanLoopRequestSource

type BatchStrategy

type BatchStrategy string
const (
	BatchStrategyMulti_record  BatchStrategy = "MultiRecord"
	BatchStrategySingle_record BatchStrategy = "SingleRecord"
)

Enum values for BatchStrategy

type BooleanOperator

type BooleanOperator string
const (
	BooleanOperatorAnd BooleanOperator = "And"
	BooleanOperatorOr  BooleanOperator = "Or"
)

Enum values for BooleanOperator

type CandidateSortBy

type CandidateSortBy string
const (
	CandidateSortByCreationtime              CandidateSortBy = "CreationTime"
	CandidateSortByStatus                    CandidateSortBy = "Status"
	CandidateSortByFinalobjectivemetricvalue CandidateSortBy = "FinalObjectiveMetricValue"
)

Enum values for CandidateSortBy

type CandidateStatus

type CandidateStatus string
const (
	CandidateStatusCompleted   CandidateStatus = "Completed"
	CandidateStatusIn_progress CandidateStatus = "InProgress"
	CandidateStatusFailed      CandidateStatus = "Failed"
	CandidateStatusStopped     CandidateStatus = "Stopped"
	CandidateStatusStopping    CandidateStatus = "Stopping"
)

Enum values for CandidateStatus

type CandidateStepType

type CandidateStepType string
const (
	CandidateStepTypeTraining   CandidateStepType = "AWS::SageMaker::TrainingJob"
	CandidateStepTypeTransform  CandidateStepType = "AWS::SageMaker::TransformJob"
	CandidateStepTypeProcessing CandidateStepType = "AWS::SageMaker::ProcessingJob"
)

Enum values for CandidateStepType

type CaptureContentTypeHeader

type CaptureContentTypeHeader struct {

	//
	CsvContentTypes []*string

	//
	JsonContentTypes []*string
}

type CaptureMode

type CaptureMode string
const (
	CaptureModeInput  CaptureMode = "Input"
	CaptureModeOutput CaptureMode = "Output"
)

Enum values for CaptureMode

type CaptureOption

type CaptureOption struct {

	//
	//
	// This member is required.
	CaptureMode CaptureMode
}

type CaptureStatus

type CaptureStatus string
const (
	CaptureStatusStarted CaptureStatus = "Started"
	CaptureStatusStopped CaptureStatus = "Stopped"
)

Enum values for CaptureStatus

type CategoricalParameterRange

type CategoricalParameterRange struct {

	// The name of the categorical hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// A list of the categories for the hyperparameter.
	//
	// This member is required.
	Values []*string
}

A list of categorical hyperparameters to tune.

type CategoricalParameterRangeSpecification

type CategoricalParameterRangeSpecification struct {

	// The allowed categories for the hyperparameter.
	//
	// This member is required.
	Values []*string
}

Defines the possible values for a categorical hyperparameter.

type Channel

type Channel struct {

	// The name of the channel.
	//
	// This member is required.
	ChannelName *string

	// The location of the channel data.
	//
	// This member is required.
	DataSource *DataSource

	// If training data is compressed, the compression type. The default value is None.
	// CompressionType is used only in Pipe input mode. In File mode, leave this field
	// unset or set it to None.
	CompressionType CompressionType

	// The MIME type of the data.
	ContentType *string

	// (Optional) The input mode to use for the data channel in a training job. If you
	// don't set a value for InputMode, Amazon SageMaker uses the value set for
	// TrainingInputMode. Use this parameter to override the TrainingInputMode setting
	// in a AlgorithmSpecification request when you have a channel that needs a
	// different input mode from the training job's general setting. To download the
	// data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML
	// storage volume, and mount the directory to a Docker volume, use File input mode.
	// To stream data directly from Amazon S3 to the container, choose Pipe input mode.
	// To use a model for incremental training, choose File input model.
	InputMode TrainingInputMode

	// Specify RecordIO as the value when input data is in raw format but the training
	// algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps
	// each individual S3 object in a RecordIO record. If the input data is already in
	// RecordIO format, you don't need to set this attribute. For more information, see
	// Create a Dataset Using RecordIO
	// (https://mxnet.apache.org/api/architecture/note_data_loading#data-format). In
	// File mode, leave this field unset or set it to None.
	RecordWrapperType RecordWrapper

	// A configuration for a shuffle option for input data in a channel. If you use
	// S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches.
	// If you use ManifestFile, the order of the S3 object references in the
	// ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the
	// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
	// determined using the Seed value. For Pipe input mode, shuffling is done at the
	// start of every epoch. With large datasets this ensures that the order of the
	// training data is different for each epoch, it helps reduce bias and possible
	// overfitting. In a multi-node training job when ShuffleConfig is combined with
	// S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so
	// that the content sent to a particular node on the first epoch might be sent to a
	// different node on the second epoch.
	ShuffleConfig *ShuffleConfig
}

A channel is a named input source that training algorithms can consume.

type ChannelSpecification

type ChannelSpecification struct {

	// The name of the channel.
	//
	// This member is required.
	Name *string

	// The supported MIME types for the data.
	//
	// This member is required.
	SupportedContentTypes []*string

	// The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker
	// copies the data from the input source onto the local Amazon Elastic Block Store
	// (Amazon EBS) volumes before starting your training algorithm. This is the most
	// commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from
	// the source directly to your algorithm without using the EBS volume.
	//
	// This member is required.
	SupportedInputModes []TrainingInputMode

	// A brief description of the channel.
	Description *string

	// Indicates whether the channel is required by the algorithm.
	IsRequired *bool

	// The allowed compression types, if data compression is used.
	SupportedCompressionTypes []CompressionType
}

Defines a named input source, called a channel, to be used by an algorithm.

type CheckpointConfig

type CheckpointConfig struct {

	// Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For
	// example, s3://bucket-name/key-name-prefix.
	//
	// This member is required.
	S3Uri *string

	// (Optional) The local directory where checkpoints are written. The default
	// directory is /opt/ml/checkpoints/.
	LocalPath *string
}

Contains information about the output location for managed spot training checkpoint data.

type CodeRepositorySortBy

type CodeRepositorySortBy string
const (
	CodeRepositorySortByName               CodeRepositorySortBy = "Name"
	CodeRepositorySortByCreation_time      CodeRepositorySortBy = "CreationTime"
	CodeRepositorySortByLast_modified_time CodeRepositorySortBy = "LastModifiedTime"
)

Enum values for CodeRepositorySortBy

type CodeRepositorySortOrder

type CodeRepositorySortOrder string
const (
	CodeRepositorySortOrderAscending  CodeRepositorySortOrder = "Ascending"
	CodeRepositorySortOrderDescending CodeRepositorySortOrder = "Descending"
)

Enum values for CodeRepositorySortOrder

type CodeRepositorySummary

type CodeRepositorySummary struct {

	// The Amazon Resource Name (ARN) of the Git repository.
	//
	// This member is required.
	CodeRepositoryArn *string

	// The name of the Git repository.
	//
	// This member is required.
	CodeRepositoryName *string

	// The date and time that the Git repository was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The date and time that the Git repository was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// Configuration details for the Git repository, including the URL where it is
	// located and the ARN of the AWS Secrets Manager secret that contains the
	// credentials used to access the repository.
	GitConfig *GitConfig
}

Specifies summary information about a Git repository.

type CognitoConfig

type CognitoConfig struct {

	// The client ID for your Amazon Cognito user pool.
	//
	// This member is required.
	ClientId *string

	// A  user pool
	// (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
	// is a user directory in Amazon Cognito. With a user pool, your users can sign in
	// to your web or mobile app through Amazon Cognito. Your users can also sign in
	// through social identity providers like Google, Facebook, Amazon, or Apple, and
	// through SAML identity providers.
	//
	// This member is required.
	UserPool *string
}

Use this parameter to configure your Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html).

type CognitoMemberDefinition

type CognitoMemberDefinition struct {

	// An identifier for an application client. You must create the app client ID using
	// Amazon Cognito.
	//
	// This member is required.
	ClientId *string

	// An identifier for a user group.
	//
	// This member is required.
	UserGroup *string

	// An identifier for a user pool. The user pool must be in the same region as the
	// service that you are calling.
	//
	// This member is required.
	UserPool *string
}

Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.

type CollectionConfiguration

type CollectionConfiguration struct {

	// The name of the tensor collection. The name must be unique relative to other
	// rule configuration names.
	CollectionName *string

	// Parameter values for the tensor collection. The allowed parameters are "name",
	// "include_regex", "reduction_config", "save_config", "tensor_names", and
	// "save_histogram".
	CollectionParameters map[string]*string
}

Configuration information for tensor collections.

type CompilationJobStatus

type CompilationJobStatus string
const (
	CompilationJobStatusInprogress CompilationJobStatus = "INPROGRESS"
	CompilationJobStatusCompleted  CompilationJobStatus = "COMPLETED"
	CompilationJobStatusFailed     CompilationJobStatus = "FAILED"
	CompilationJobStatusStarting   CompilationJobStatus = "STARTING"
	CompilationJobStatusStopping   CompilationJobStatus = "STOPPING"
	CompilationJobStatusStopped    CompilationJobStatus = "STOPPED"
)

Enum values for CompilationJobStatus

type CompilationJobSummary

type CompilationJobSummary struct {

	// The Amazon Resource Name (ARN) of the model compilation job.
	//
	// This member is required.
	CompilationJobArn *string

	// The name of the model compilation job that you want a summary for.
	//
	// This member is required.
	CompilationJobName *string

	// The status of the model compilation job.
	//
	// This member is required.
	CompilationJobStatus CompilationJobStatus

	// The time when the model compilation job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The time when the model compilation job completed.
	CompilationEndTime *time.Time

	// The time when the model compilation job started.
	CompilationStartTime *time.Time

	// The type of device that the model will run on after the compilation job has
	// completed.
	CompilationTargetDevice TargetDevice

	// The type of accelerator that the model will run on after the compilation job has
	// completed.
	CompilationTargetPlatformAccelerator TargetPlatformAccelerator

	// The type of architecture that the model will run on after the compilation job
	// has completed.
	CompilationTargetPlatformArch TargetPlatformArch

	// The type of OS that the model will run on after the compilation job has
	// completed.
	CompilationTargetPlatformOs TargetPlatformOs

	// The time when the model compilation job was last modified.
	LastModifiedTime *time.Time
}

A summary of a model compilation job.

type CompressionType

type CompressionType string
const (
	CompressionTypeNone CompressionType = "None"
	CompressionTypeGzip CompressionType = "Gzip"
)

Enum values for CompressionType

type ConflictException

type ConflictException struct {
	Message *string
}

There was a conflict when you attempted to modify an experiment, trial, or trial component.

func (*ConflictException) Error

func (e *ConflictException) Error() string

func (*ConflictException) ErrorCode

func (e *ConflictException) ErrorCode() string

func (*ConflictException) ErrorFault

func (e *ConflictException) ErrorFault() smithy.ErrorFault

func (*ConflictException) ErrorMessage

func (e *ConflictException) ErrorMessage() string

type ContainerDefinition

type ContainerDefinition struct {

	// This parameter is ignored for models that contain only a PrimaryContainer. When
	// a ContainerDefinition is part of an inference pipeline, the value of the
	// parameter uniquely identifies the container for the purposes of logging and
	// metrics. For information, see Use Logs and Metrics to Monitor an Inference
	// Pipeline
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html).
	// If you don't specify a value for this parameter for a ContainerDefinition that
	// is part of an inference pipeline, a unique name is automatically assigned based
	// on the position of the ContainerDefinition in the pipeline. If you specify a
	// value for the ContainerHostName for any ContainerDefinition that is part of an
	// inference pipeline, you must specify a value for the ContainerHostName parameter
	// of every ContainerDefinition in that pipeline.
	ContainerHostname *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string to string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]*string

	// The Amazon EC2 Container Registry (Amazon ECR) path where inference code is
	// stored. If you are using your own custom algorithm instead of an algorithm
	// provided by Amazon SageMaker, the inference code must meet Amazon SageMaker
	// requirements. Amazon SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see Using
	// Your Own Algorithms with Amazon SageMaker
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	Image *string

	// Whether the container hosts a single model or multiple models.
	Mode ContainerMode

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but
	// not if you use your own algorithms. For more information on built-in algorithms,
	// see Common Parameters
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html).
	// If you provide a value for this parameter, Amazon SageMaker uses AWS Security
	// Token Service to download model artifacts from the S3 path you provide. AWS STS
	// is activated in your IAM user account by default. If you previously deactivated
	// AWS STS for a region, you need to reactivate AWS STS for that region. For more
	// information, see Activating and Deactivating AWS STS in an AWS Region
	// (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html)
	// in the AWS Identity and Access Management User Guide. If you use a built-in
	// algorithm to create a model, Amazon SageMaker requires that you provide a S3
	// path to the model artifacts in ModelDataUrl.
	ModelDataUrl *string

	// The name or Amazon Resource Name (ARN) of the model package to use to create the
	// model.
	ModelPackageName *string
}

Describes the container, as part of model definition.

type ContainerMode

type ContainerMode string
const (
	ContainerModeSingle_model ContainerMode = "SingleModel"
	ContainerModeMulti_model  ContainerMode = "MultiModel"
)

Enum values for ContainerMode

type ContentClassifier

type ContentClassifier string
const (
	ContentClassifierFree_of_personally_identifiable_information ContentClassifier = "FreeOfPersonallyIdentifiableInformation"
	ContentClassifierFree_of_adult_content                       ContentClassifier = "FreeOfAdultContent"
)

Enum values for ContentClassifier

type ContinuousParameterRange

type ContinuousParameterRange struct {

	// The maximum value for the hyperparameter. The tuning job uses floating-point
	// values between MinValue value and this value for tuning.
	//
	// This member is required.
	MaxValue *string

	// The minimum value for the hyperparameter. The tuning job uses floating-point
	// values between this value and MaxValuefor tuning.
	//
	// This member is required.
	MinValue *string

	// The name of the continuous hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type).
	// One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses
	// the best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the
	// values in the hyperparameter range by using a reverse logarithmic scale. Reverse
	// logarithmic scaling works only for ranges that are entirely within the range
	// 0<=x<1.0.
	ScalingType HyperParameterScalingType
}

A list of continuous hyperparameters to tune.

type ContinuousParameterRangeSpecification

type ContinuousParameterRangeSpecification struct {

	// The maximum floating-point value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum floating-point value allowed.
	//
	// This member is required.
	MinValue *string
}

Defines the possible values for a continuous hyperparameter.

type DataCaptureConfig

type DataCaptureConfig struct {

	//
	//
	// This member is required.
	CaptureOptions []*CaptureOption

	//
	//
	// This member is required.
	DestinationS3Uri *string

	//
	//
	// This member is required.
	InitialSamplingPercentage *int32

	//
	CaptureContentTypeHeader *CaptureContentTypeHeader

	//
	EnableCapture *bool

	//
	KmsKeyId *string
}

type DataCaptureConfigSummary

type DataCaptureConfigSummary struct {

	//
	//
	// This member is required.
	CaptureStatus CaptureStatus

	//
	//
	// This member is required.
	CurrentSamplingPercentage *int32

	//
	//
	// This member is required.
	DestinationS3Uri *string

	//
	//
	// This member is required.
	EnableCapture *bool

	//
	//
	// This member is required.
	KmsKeyId *string
}

type DataProcessing

type DataProcessing struct {

	// A JSONPath
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the input data to pass to the algorithm.
	// Use the InputFilter parameter to exclude fields, such as an ID column, from the
	// input. If you want Amazon SageMaker to pass the entire input dataset to the
	// algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features"
	InputFilter *string

	// Specifies the source of the data to join with the transformed data. The valid
	// values are None and Input. The default value is None, which specifies not to
	// join the input with the transformed data. If you want the batch transform job to
	// join the original input data with the transformed data, set JoinSource to Input.
	// For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the
	// transformed data to the input JSON object in an attribute called
	// SageMakerOutput. The joined result for JSON must be a key-value pair object. If
	// the input is not a key-value pair object, Amazon SageMaker creates a new JSON
	// file. In the new JSON file, and the input data is stored under the
	// SageMakerInput key and the results are stored in SageMakerOutput. For CSV files,
	// Amazon SageMaker combines the transformed data with the input data at the end of
	// the input data and stores it in the output file. The joined data has the joined
	// input data followed by the transformed data and the output is a CSV file.
	JoinSource JoinSource

	// A JSONPath
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the joined dataset to save in the output
	// file for a batch transform job. If you want Amazon SageMaker to store the entire
	// input dataset in the output file, leave the default value, $. If you specify
	// indexes that aren't within the dimension size of the joined dataset, you get an
	// error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"
	OutputFilter *string
}

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html).

type DataSource

type DataSource struct {

	// The file system that is associated with a channel.
	FileSystemDataSource *FileSystemDataSource

	// The S3 location of the data source that is associated with a channel.
	S3DataSource *S3DataSource
}

Describes the location of the channel data.

type DebugHookConfig

type DebugHookConfig struct {

	// Path to Amazon S3 storage location for tensors.
	//
	// This member is required.
	S3OutputPath *string

	// Configuration information for tensor collections.
	CollectionConfigurations []*CollectionConfiguration

	// Configuration information for the debug hook parameters.
	HookParameters map[string]*string

	// Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/.
	LocalPath *string
}

Configuration information for the debug hook parameters, collection configuration, and storage paths.

type DebugRuleConfiguration

type DebugRuleConfiguration struct {

	// The name of the rule configuration. It must be unique relative to other rule
	// configuration names.
	//
	// This member is required.
	RuleConfigurationName *string

	// The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
	//
	// This member is required.
	RuleEvaluatorImage *string

	// The instance type to deploy for a training job.
	InstanceType ProcessingInstanceType

	// Path to local storage location for output of rules. Defaults to
	// /opt/ml/processing/output/rule/.
	LocalPath *string

	// Runtime configuration for rule container.
	RuleParameters map[string]*string

	// Path to Amazon S3 storage location for rules.
	S3OutputPath *string

	// The size, in GB, of the ML storage volume attached to the processing instance.
	VolumeSizeInGB *int32
}

Configuration information for debugging rules.

type DebugRuleEvaluationStatus

type DebugRuleEvaluationStatus struct {

	// Timestamp when the rule evaluation status was last modified.
	LastModifiedTime *time.Time

	// The name of the rule configuration
	RuleConfigurationName *string

	// The Amazon Resource Name (ARN) of the rule evaluation job.
	RuleEvaluationJobArn *string

	// Status of the rule evaluation.
	RuleEvaluationStatus RuleEvaluationStatus

	// Details from the rule evaluation.
	StatusDetails *string
}

Information about the status of the rule evaluation.

type DeployedImage

type DeployedImage struct {

	// The date and time when the image path for the model resolved to the
	// ResolvedImage
	ResolutionTime *time.Time

	// The specific digest path of the image hosted in this ProductionVariant.
	ResolvedImage *string

	// The image path you specified when you created the model.
	SpecifiedImage *string
}

Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant. If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant, the path resolves to a path of the form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html) in the Amazon ECR User Guide.

type DesiredWeightAndCapacity

type DesiredWeightAndCapacity struct {

	// The name of the variant to update.
	//
	// This member is required.
	VariantName *string

	// The variant's capacity.
	DesiredInstanceCount *int32

	// The variant's weight.
	DesiredWeight *float32
}

Specifies weight and capacity values for a production variant.

type DetailedAlgorithmStatus

type DetailedAlgorithmStatus string
const (
	DetailedAlgorithmStatusNot_started DetailedAlgorithmStatus = "NotStarted"
	DetailedAlgorithmStatusIn_progress DetailedAlgorithmStatus = "InProgress"
	DetailedAlgorithmStatusCompleted   DetailedAlgorithmStatus = "Completed"
	DetailedAlgorithmStatusFailed      DetailedAlgorithmStatus = "Failed"
)

Enum values for DetailedAlgorithmStatus

type DetailedModelPackageStatus

type DetailedModelPackageStatus string
const (
	DetailedModelPackageStatusNot_started DetailedModelPackageStatus = "NotStarted"
	DetailedModelPackageStatusIn_progress DetailedModelPackageStatus = "InProgress"
	DetailedModelPackageStatusCompleted   DetailedModelPackageStatus = "Completed"
	DetailedModelPackageStatusFailed      DetailedModelPackageStatus = "Failed"
)

Enum values for DetailedModelPackageStatus

type DirectInternetAccess

type DirectInternetAccess string
const (
	DirectInternetAccessEnabled  DirectInternetAccess = "Enabled"
	DirectInternetAccessDisabled DirectInternetAccess = "Disabled"
)

Enum values for DirectInternetAccess

type DomainDetails

type DomainDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain's Amazon Resource Name (ARN).
	DomainArn *string

	// The domain ID.
	DomainId *string

	// The domain name.
	DomainName *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status DomainStatus

	// The domain's URL.
	Url *string
}

The domain's details.

type DomainStatus

type DomainStatus string
const (
	DomainStatusDeleting  DomainStatus = "Deleting"
	DomainStatusFailed    DomainStatus = "Failed"
	DomainStatusInservice DomainStatus = "InService"
	DomainStatusPending   DomainStatus = "Pending"
)

Enum values for DomainStatus

type EndpointConfigSortKey

type EndpointConfigSortKey string
const (
	EndpointConfigSortKeyName         EndpointConfigSortKey = "Name"
	EndpointConfigSortKeyCreationtime EndpointConfigSortKey = "CreationTime"
)

Enum values for EndpointConfigSortKey

type EndpointConfigSummary

type EndpointConfigSummary struct {

	// A timestamp that shows when the endpoint configuration was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigArn *string

	// The name of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigName *string
}

Provides summary information for an endpoint configuration.

type EndpointInput

type EndpointInput struct {

	// An endpoint in customer's account which has enabled DataCaptureConfig enabled.
	//
	// This member is required.
	EndpointName *string

	// Path to the filesystem where the endpoint data is available to the container.
	//
	// This member is required.
	LocalPath *string

	// Whether input data distributed in Amazon S3 is fully replicated or sharded by an
	// S3 key. Defauts to FullyReplicated
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether the Pipe or File is used as the input mode for transfering data for the
	// monitoring job. Pipe mode is recommended for large datasets. File mode is useful
	// for small files that fit in memory. Defaults to File.
	S3InputMode ProcessingS3InputMode
}

Input object for the endpoint

type EndpointSortKey

type EndpointSortKey string
const (
	EndpointSortKeyName         EndpointSortKey = "Name"
	EndpointSortKeyCreationtime EndpointSortKey = "CreationTime"
	EndpointSortKeyStatus       EndpointSortKey = "Status"
)

Enum values for EndpointSortKey

type EndpointStatus

type EndpointStatus string
const (
	EndpointStatusOut_of_service  EndpointStatus = "OutOfService"
	EndpointStatusCreating        EndpointStatus = "Creating"
	EndpointStatusUpdating        EndpointStatus = "Updating"
	EndpointStatusSystem_updating EndpointStatus = "SystemUpdating"
	EndpointStatusRolling_back    EndpointStatus = "RollingBack"
	EndpointStatusIn_service      EndpointStatus = "InService"
	EndpointStatusDeleting        EndpointStatus = "Deleting"
	EndpointStatusFailed          EndpointStatus = "Failed"
)

Enum values for EndpointStatus

type EndpointSummary

type EndpointSummary struct {

	// A timestamp that shows when the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The status of the endpoint.
	//
	//     * OutOfService: Endpoint is not available to
	// take incoming requests.
	//
	//     * Creating: CreateEndpoint is executing.
	//
	//     *
	// Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.
	//
	//
	// * SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or
	// deleted or re-scaled until it has completed. This maintenance operation does not
	// change any customer-specified values such as VPC config, KMS encryption, model,
	// instance type, or instance count.
	//
	//     * RollingBack: Endpoint fails to scale up
	// or down or change its variant weight and is in the process of rolling back to
	// its previous configuration. Once the rollback completes, endpoint returns to an
	// InService status. This transitional status only applies to an endpoint that has
	// autoscaling enabled and is undergoing variant weight or capacity changes as part
	// of an UpdateEndpointWeightsAndCapacities call or when the
	// UpdateEndpointWeightsAndCapacities operation is called explicitly.
	//
	//     *
	// InService: Endpoint is available to process incoming requests.
	//
	//     * Deleting:
	// DeleteEndpoint is executing.
	//
	//     * Failed: Endpoint could not be created,
	// updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information
	// about the failure. DeleteEndpoint is the only operation that can be performed on
	// a failed endpoint.
	//
	// To get a list of endpoints with a specified status, use the
	// ListEndpointsInput$StatusEquals filter.
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// A timestamp that shows when the endpoint was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time
}

Provides summary information for an endpoint.

type ExecutionStatus

type ExecutionStatus string
const (
	ExecutionStatusPending                   ExecutionStatus = "Pending"
	ExecutionStatusCompleted                 ExecutionStatus = "Completed"
	ExecutionStatusCompleted_with_violations ExecutionStatus = "CompletedWithViolations"
	ExecutionStatusIn_progress               ExecutionStatus = "InProgress"
	ExecutionStatusFailed                    ExecutionStatus = "Failed"
	ExecutionStatusStopping                  ExecutionStatus = "Stopping"
	ExecutionStatusStopped                   ExecutionStatus = "Stopped"
)

Enum values for ExecutionStatus

type Experiment

type Experiment struct {

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	CreatedBy *UserContext

	// When the experiment was created.
	CreationTime *time.Time

	// The description of the experiment.
	Description *string

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	LastModifiedBy *UserContext

	// When the experiment was last modified.
	LastModifiedTime *time.Time

	// The source of the experiment.
	Source *ExperimentSource

	// The list of tags that are associated with the experiment. You can use Search API
	// to search on the tags.
	Tags []*Tag
}

The properties of an experiment as returned by the Search API.

type ExperimentConfig

type ExperimentConfig struct {

	// The name of an existing experiment to associate the trial component with.
	ExperimentName *string

	// The display name for the trial component. If this key isn't specified, the
	// display name is the trial component name.
	TrialComponentDisplayName *string

	// The name of an existing trial to associate the trial component with. If not
	// specified, a new trial is created.
	TrialName *string
}

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

CreateTrainingJob

type ExperimentSource

type ExperimentSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source type.
	SourceType *string
}

The source of the experiment.

type ExperimentSummary

type ExperimentSummary struct {

	// When the experiment was created.
	CreationTime *time.Time

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// The source of the experiment.
	ExperimentSource *ExperimentSource

	// When the experiment was last modified.
	LastModifiedTime *time.Time
}

A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment API and provide the ExperimentName.

type FileSystemAccessMode

type FileSystemAccessMode string
const (
	FileSystemAccessModeRw FileSystemAccessMode = "rw"
	FileSystemAccessModeRo FileSystemAccessMode = "ro"
)

Enum values for FileSystemAccessMode

type FileSystemDataSource

type FileSystemDataSource struct {

	// The full path to the directory to associate with the channel.
	//
	// This member is required.
	DirectoryPath *string

	// The access mode of the mount of the directory associated with the channel. A
	// directory can be mounted either in ro (read-only) or rw (read-write) mode.
	//
	// This member is required.
	FileSystemAccessMode FileSystemAccessMode

	// The file system id.
	//
	// This member is required.
	FileSystemId *string

	// The file system type.
	//
	// This member is required.
	FileSystemType FileSystemType
}

Specifies a file system data source for a channel.

type FileSystemType

type FileSystemType string
const (
	FileSystemTypeEfs       FileSystemType = "EFS"
	FileSystemTypeFsxlustre FileSystemType = "FSxLustre"
)

Enum values for FileSystemType

type Filter

type Filter struct {

	// A resource property name. For example, TrainingJobName. For valid property
	// names, see SearchRecord. You must specify a valid property for the resource.
	//
	// This member is required.
	Name *string

	// A Boolean binary operator that is used to evaluate the filter. The operator
	// field contains one of the following values: Equals The value of Name equals
	// Value. NotEquals The value of Name doesn't equal Value. Exists The Name property
	// exists. NotExists The Name property does not exist. GreaterThan The value of
	// Name is greater than Value. Not supported for text properties.
	// GreaterThanOrEqualTo The value of Name is greater than or equal to Value. Not
	// supported for text properties. LessThan The value of Name is less than Value.
	// Not supported for text properties. LessThanOrEqualTo The value of Name is less
	// than or equal to Value. Not supported for text properties. In The value of Name
	// is one of the comma delimited strings in Value. Only supported for text
	// properties. Contains The value of Name contains the string Value. Only supported
	// for text properties. A SearchExpression can include the Contains operator
	// multiple times when the value of Name is one of the following:
	//
	//     *
	// Experiment.DisplayName
	//
	//     * Experiment.ExperimentName
	//
	//     * Experiment.Tags
	//
	//
	// * Trial.DisplayName
	//
	//     * Trial.TrialName
	//
	//     * Trial.Tags
	//
	//     *
	// TrialComponent.DisplayName
	//
	//     * TrialComponent.TrialComponentName
	//
	//     *
	// TrialComponent.Tags
	//
	//     * TrialComponent.InputArtifacts
	//
	//     *
	// TrialComponent.OutputArtifacts
	//
	// A SearchExpression can include only one Contains
	// operator for all other values of Name. In these cases, if you include multiple
	// Contains operators in the SearchExpression, the result is the following error
	// message: "'CONTAINS' operator usage limit of 1 exceeded."
	Operator Operator

	// A value used with Name and Operator to determine which resources satisfy the
	// filter's condition. For numerical properties, Value must be an integer or
	// floating-point decimal. For timestamp properties, Value must be an ISO 8601
	// date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
	Value *string
}

A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API. If you specify a Value, but not an Operator, Amazon SageMaker uses the equals operator. In search, there are several property types: Metrics To define a metric filter, enter a value using the form "Metrics.", where is a metric name. For example, the following filter searches for training jobs with an "accuracy" metric greater than "0.9": {

"Name": "Metrics.accuracy",

"Operator": "GreaterThan",

"Value":

"0.9"

} HyperParameters To define a hyperparameter filter, enter a value with the form "HyperParameters.". Decimal hyperparameter values are treated as a decimal in a comparison if the specified Value is also a decimal value. If the specified Value is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a

"learning_rate" hyperparameter that is less than "0.5":  {
    "Name":

"HyperParameters.learning_rate",

"Operator": "LessThan",

"Value":

"0.5"

} Tags To define a tag filter, enter a value with the form Tags..

type FinalAutoMLJobObjectiveMetric

type FinalAutoMLJobObjectiveMetric struct {

	// The name of the metric.
	//
	// This member is required.
	MetricName AutoMLMetricEnum

	// The value of the metric.
	//
	// This member is required.
	Value *float32

	// The metric type used.
	Type AutoMLJobObjectiveType
}

The candidate result from a job.

type FinalHyperParameterTuningJobObjectiveMetric

type FinalHyperParameterTuningJobObjectiveMetric struct {

	// The name of the objective metric.
	//
	// This member is required.
	MetricName *string

	// The value of the objective metric.
	//
	// This member is required.
	Value *float32

	// Whether to minimize or maximize the objective metric. Valid values are Minimize
	// and Maximize.
	Type HyperParameterTuningJobObjectiveType
}

Shows the final value for the objective metric for a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig.

type FlowDefinitionOutputConfig

type FlowDefinitionOutputConfig struct {

	// The Amazon S3 path where the object containing human output will be made
	// available.
	//
	// This member is required.
	S3OutputPath *string

	// The Amazon Key Management Service (KMS) key ID for server-side encryption.
	KmsKeyId *string
}

Contains information about where human output will be stored.

type FlowDefinitionStatus

type FlowDefinitionStatus string
const (
	FlowDefinitionStatusInitializing FlowDefinitionStatus = "Initializing"
	FlowDefinitionStatusActive       FlowDefinitionStatus = "Active"
	FlowDefinitionStatusFailed       FlowDefinitionStatus = "Failed"
	FlowDefinitionStatusDeleting     FlowDefinitionStatus = "Deleting"
)

Enum values for FlowDefinitionStatus

type FlowDefinitionSummary

type FlowDefinitionSummary struct {

	// The timestamp when SageMaker created the flow definition.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the flow definition.
	//
	// This member is required.
	FlowDefinitionArn *string

	// The name of the flow definition.
	//
	// This member is required.
	FlowDefinitionName *string

	// The status of the flow definition. Valid values:
	//
	// This member is required.
	FlowDefinitionStatus FlowDefinitionStatus

	// The reason why the flow definition creation failed. A failure reason is returned
	// only when the flow definition status is Failed.
	FailureReason *string
}

Contains summary information about the flow definition.

type Framework

type Framework string
const (
	FrameworkTensorflow Framework = "TENSORFLOW"
	FrameworkKeras      Framework = "KERAS"
	FrameworkMxnet      Framework = "MXNET"
	FrameworkOnnx       Framework = "ONNX"
	FrameworkPytorch    Framework = "PYTORCH"
	FrameworkXgboost    Framework = "XGBOOST"
	FrameworkTflite     Framework = "TFLITE"
)

Enum values for Framework

type GitConfig

type GitConfig struct {

	// The URL where the Git repository is located.
	//
	// This member is required.
	RepositoryUrl *string

	// The default branch for the Git repository.
	Branch *string

	// The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains
	// the credentials used to access the git repository. The secret must have a
	// staging label of AWSCURRENT and must be in the following format: {"username":
	// UserName, "password": Password}
	SecretArn *string
}

Specifies configuration details for a Git repository in your AWS account.

type GitConfigForUpdate

type GitConfigForUpdate struct {

	// The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains
	// the credentials used to access the git repository. The secret must have a
	// staging label of AWSCURRENT and must be in the following format: {"username":
	// UserName, "password": Password}
	SecretArn *string
}

Specifies configuration details for a Git repository when the repository is updated.

type HumanLoopActivationConditionsConfig

type HumanLoopActivationConditionsConfig struct {

	// JSON expressing use-case specific conditions declaratively. If any condition is
	// matched, atomic tasks are created against the configured work team. The set of
	// conditions is different for Rekognition and Textract. For more information about
	// how to structure the JSON, see JSON Schema for Human Loop Activation Conditions
	// in Amazon Augmented AI
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html)
	// in the Amazon SageMaker Developer Guide.
	// This value conforms to the media type: application/json
	//
	// This member is required.
	HumanLoopActivationConditions *string
}

Defines under what conditions SageMaker creates a human loop. Used within . See for the required format of activation conditions.

type HumanLoopActivationConfig

type HumanLoopActivationConfig struct {

	// Container structure for defining under what conditions SageMaker creates a human
	// loop.
	//
	// This member is required.
	HumanLoopActivationConditionsConfig *HumanLoopActivationConditionsConfig
}

Provides information about how and under what conditions SageMaker creates a human loop. If HumanLoopActivationConfig is not given, then all requests go to humans.

type HumanLoopConfig

type HumanLoopConfig struct {

	// The Amazon Resource Name (ARN) of the human task user interface.
	//
	// This member is required.
	HumanTaskUiArn *string

	// The number of distinct workers who will perform the same task on each object.
	// For example, if TaskCount is set to 3 for an image classification labeling job,
	// three workers will classify each input image. Increasing TaskCount can improve
	// label accuracy.
	//
	// This member is required.
	TaskCount *int32

	// A description for the human worker task.
	//
	// This member is required.
	TaskDescription *string

	// A title for the human worker task.
	//
	// This member is required.
	TaskTitle *string

	// Amazon Resource Name (ARN) of a team of workers.
	//
	// This member is required.
	WorkteamArn *string

	// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
	// task performed. Use one of the following prices for bounding box tasks. Prices
	// are in US dollars and should be based on the complexity of the task; the longer
	// it takes in your initial testing, the more you should offer.
	//
	//     * 0.036
	//
	//     *
	// 0.048
	//
	//     * 0.060
	//
	//     * 0.072
	//
	//     * 0.120
	//
	//     * 0.240
	//
	//     * 0.360
	//
	//     *
	// 0.480
	//
	//     * 0.600
	//
	//     * 0.720
	//
	//     * 0.840
	//
	//     * 0.960
	//
	//     * 1.080
	//
	//     *
	// 1.200
	//
	// Use one of the following prices for image classification, text
	// classification, and custom tasks. Prices are in US dollars.
	//
	//     * 0.012
	//
	//     *
	// 0.024
	//
	//     * 0.036
	//
	//     * 0.048
	//
	//     * 0.060
	//
	//     * 0.072
	//
	//     * 0.120
	//
	//     *
	// 0.240
	//
	//     * 0.360
	//
	//     * 0.480
	//
	//     * 0.600
	//
	//     * 0.720
	//
	//     * 0.840
	//
	//     *
	// 0.960
	//
	//     * 1.080
	//
	//     * 1.200
	//
	// Use one of the following prices for semantic
	// segmentation tasks. Prices are in US dollars.
	//
	//     * 0.840
	//
	//     * 0.960
	//
	//     *
	// 1.080
	//
	//     * 1.200
	//
	// Use one of the following prices for Textract AnalyzeDocument
	// Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
	//
	//
	// * 2.400
	//
	//     * 2.280
	//
	//     * 2.160
	//
	//     * 2.040
	//
	//     * 1.920
	//
	//     * 1.800
	//
	//     *
	// 1.680
	//
	//     * 1.560
	//
	//     * 1.440
	//
	//     * 1.320
	//
	//     * 1.200
	//
	//     * 1.080
	//
	//     *
	// 0.960
	//
	//     * 0.840
	//
	//     * 0.720
	//
	//     * 0.600
	//
	//     * 0.480
	//
	//     * 0.360
	//
	//     *
	// 0.240
	//
	//     * 0.120
	//
	//     * 0.072
	//
	//     * 0.060
	//
	//     * 0.048
	//
	//     * 0.036
	//
	//     *
	// 0.024
	//
	//     * 0.012
	//
	// Use one of the following prices for Rekognition
	// DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US
	// dollars.
	//
	//     * 1.200
	//
	//     * 1.080
	//
	//     * 0.960
	//
	//     * 0.840
	//
	//     * 0.720
	//
	//     *
	// 0.600
	//
	//     * 0.480
	//
	//     * 0.360
	//
	//     * 0.240
	//
	//     * 0.120
	//
	//     * 0.072
	//
	//     *
	// 0.060
	//
	//     * 0.048
	//
	//     * 0.036
	//
	//     * 0.024
	//
	//     * 0.012
	//
	// Use one of the
	// following prices for Amazon Augmented AI custom human review tasks. Prices are
	// in US dollars.
	//
	//     * 1.200
	//
	//     * 1.080
	//
	//     * 0.960
	//
	//     * 0.840
	//
	//     *
	// 0.720
	//
	//     * 0.600
	//
	//     * 0.480
	//
	//     * 0.360
	//
	//     * 0.240
	//
	//     * 0.120
	//
	//     *
	// 0.072
	//
	//     * 0.060
	//
	//     * 0.048
	//
	//     * 0.036
	//
	//     * 0.024
	//
	//     * 0.012
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for labeling by human workers.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers can discover the task.
	TaskKeywords []*string

	// The amount of time that a worker has to complete a task.
	TaskTimeLimitInSeconds *int32
}

Describes the work to be performed by human workers.

type HumanLoopRequestSource

type HumanLoopRequestSource struct {

	// Specifies whether Amazon Rekognition or Amazon Textract are used as the
	// integration source. The default field settings and JSON parsing rules are
	// different based on the integration source. Valid values:
	//
	// This member is required.
	AwsManagedHumanLoopRequestSource AwsManagedHumanLoopRequestSource
}

Container for configuring the source of human task requests.

type HumanTaskConfig

type HumanTaskConfig struct {

	// Configures how labels are consolidated across human workers.
	//
	// This member is required.
	AnnotationConsolidationConfig *AnnotationConsolidationConfig

	// The number of human workers that will label an object.
	//
	// This member is required.
	NumberOfHumanWorkersPerDataObject *int32

	// The Amazon Resource Name (ARN) of a Lambda function that is run before a data
	// object is sent to a human worker. Use this function to provide input to a custom
	// labeling job. For built-in task types
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html), use one
	// of the following Amazon SageMaker Ground Truth Lambda function ARNs for
	// PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda).
	// Bounding box - Finds the most similar boxes from different workers based on the
	// Jaccard index of the boxes.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
	//
	//     *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
	//
	// Image
	// classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true class of an image based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
	//
	// Multi-label
	// image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true classes of an image based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
	//
	// Semantic
	// segmentation - Treats each pixel in an image as a multi-class classification and
	// treats pixel annotations from workers as "votes" for the correct label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
	//
	//
	// * arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
	//
	//     *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
	//
	//
	// * arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
	//
	//
	// * arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
	//
	//
	// * arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
	//
	// Text
	// classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true class of text based on annotations from individual workers.
	//
	//
	// * arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
	//
	// Multi-label
	// text classification - Uses a variant of the Expectation Maximization approach to
	// estimate the true classes of text based on annotations from individual
	// workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
	//
	// Named
	// entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
	//
	//
	// * arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
	//
	//
	// * arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
	//
	// Video
	// Classification - Use this task type when you need workers to classify videos
	// using predefined labels that you specify. Workers are shown videos and are asked
	// to choose one label for each video.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
	//
	// Video
	// Frame Object Detection - Use this task type to have workers identify and locate
	// objects in a sequence of video frames (images extracted from a video) using
	// bounding boxes. For example, you can use this task to ask workers to identify
	// and localize various objects in a series of video frames, such as cars, bikes,
	// and pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
	//
	//
	// * arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
	//
	//
	// * arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
	//
	//
	// * arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
	//
	// Video
	// Frame Object Tracking - Use this task type to have workers track the movement of
	// objects in a sequence of video frames (images extracted from a video) using
	// bounding boxes. For example, you can use this task to ask workers to track the
	// movement of objects, such as cars, bikes, and pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
	//
	//
	// * arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
	//
	//     *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
	//
	//
	// * arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
	//
	// 3D
	// Point Cloud Modalities Use the following pre-annotation lambdas for 3D point
	// cloud labeling modality tasks. See 3D Point Cloud Task types
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html)
	// to learn more. 3D Point Cloud Object Detection - Use this task type when you
	// want workers to classify objects in a 3D point cloud by drawing 3D cuboids
	// around objects. For example, you can use this task type to ask workers to
	// identify different types of objects in a point cloud, such as cars, bikes, and
	// pedestrians.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
	//
	// 3D
	// Point Cloud Object Tracking - Use this task type when you want workers to draw
	// 3D cuboids around objects that appear in a sequence of 3D point cloud frames.
	// For example, you can use this task type to ask workers to track the movement of
	// vehicles across multiple point cloud frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
	//
	// 3D
	// Point Cloud Semantic Segmentation - Use this task type when you want workers to
	// create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
	//
	// Use
	// the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html).
	// Bounding box verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgement for bounding box
	// labels based on annotations from individual workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	// Bounding
	// box adjustment - Finds the most similar boxes from different workers based on
	// the Jaccard index of the adjusted annotations.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
	//
	//     *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
	//
	//     *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
	//
	//     *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
	//
	//
	// * arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
	//
	//
	// * arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
	//
	//
	// * arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
	//
	//
	// * arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
	//
	// Semantic
	// segmentation verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgment for semantic
	// segmentation labels based on annotations from individual workers.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
	//
	// Semantic
	// segmentation adjustment - Treats each pixel in an image as a multi-class
	// classification and treats pixel adjusted annotations from workers as "votes" for
	// the correct label.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
	//
	// Video
	// Frame Object Detection Adjustment - Use this task type when you want workers to
	// adjust bounding boxes that workers have added to video frames to classify and
	// localize objects in a sequence of video frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
	//
	// Video
	// Frame Object Tracking Adjustment - Use this task type when you want workers to
	// adjust bounding boxes that workers have added to video frames to track object
	// movement across a sequence of video frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
	//
	// 3D
	// point cloud object detection adjustment - Adjust 3D cuboids in a point cloud
	// frame.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
	//
	// 3D
	// point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of
	// point cloud frames.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
	//
	// 3D
	// point cloud semantic segmentation adjustment - Adjust semantic segmentation
	// masks in a 3D point cloud.
	//
	//     *
	// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	//
	// *
	// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// A description of the task for your human workers.
	//
	// This member is required.
	TaskDescription *string

	// The amount of time that a worker has to complete a task.
	//
	// This member is required.
	TaskTimeLimitInSeconds *int32

	// A title for the task for your human workers.
	//
	// This member is required.
	TaskTitle *string

	// Information about the user interface that workers use to complete the labeling
	// task.
	//
	// This member is required.
	UiConfig *UiConfig

	// The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
	//
	// This member is required.
	WorkteamArn *string

	// Defines the maximum number of data objects that can be labeled by human workers
	// at the same time. Also referred to as batch size. Each object may have more than
	// one worker at one time. The default value is 1000 objects.
	MaxConcurrentTaskCount *int32

	// The price that you pay for each task performed by an Amazon Mechanical Turk
	// worker.
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for labeling by human workers.
	// If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours
	// (43200). The default value is 864000 seconds (10 days). For private and vendor
	// workforces, the maximum is as listed.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers on Amazon Mechanical Turk can
	// discover the task.
	TaskKeywords []*string
}

Information required for human workers to complete a labeling task.

type HumanTaskUiStatus

type HumanTaskUiStatus string
const (
	HumanTaskUiStatusActive   HumanTaskUiStatus = "Active"
	HumanTaskUiStatusDeleting HumanTaskUiStatus = "Deleting"
)

Enum values for HumanTaskUiStatus

type HumanTaskUiSummary

type HumanTaskUiSummary struct {

	// A timestamp when SageMaker created the human task user interface.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the human task user interface.
	//
	// This member is required.
	HumanTaskUiArn *string

	// The name of the human task user interface.
	//
	// This member is required.
	HumanTaskUiName *string
}

Container for human task user interface information.

type HyperParameterAlgorithmSpecification

type HyperParameterAlgorithmSpecification struct {

	// The input mode that the algorithm supports: File or Pipe. In File input mode,
	// Amazon SageMaker downloads the training data from Amazon S3 to the storage
	// volume that is attached to the training instance and mounts the directory to the
	// Docker volume for the training container. In Pipe input mode, Amazon SageMaker
	// streams data directly from Amazon S3 to the container. If you specify File mode,
	// make sure that you provision the storage volume that is attached to the training
	// instance with enough capacity to accommodate the training data downloaded from
	// Amazon S3, the model artifacts, and intermediate information. For more
	// information about input modes, see Algorithms
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html).
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the resource algorithm to use for the hyperparameter tuning job. If
	// you specify a value for this parameter, do not specify a value for
	// TrainingImage.
	AlgorithmName *string

	// An array of MetricDefinition objects that specify the metrics that the algorithm
	// emits.
	MetricDefinitions []*MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about Docker registry paths for built-in algorithms, see Algorithms
	// Provided by Amazon SageMaker: Common Parameters
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html).
	// Amazon SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see Using
	// Your Own Algorithms with Amazon SageMaker
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
	TrainingImage *string
}

Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.

type HyperParameterScalingType

type HyperParameterScalingType string
const (
	HyperParameterScalingTypeAuto                HyperParameterScalingType = "Auto"
	HyperParameterScalingTypeLinear              HyperParameterScalingType = "Linear"
	HyperParameterScalingTypeLogarithmic         HyperParameterScalingType = "Logarithmic"
	HyperParameterScalingTypeReverse_logarithmic HyperParameterScalingType = "ReverseLogarithmic"
)

Enum values for HyperParameterScalingType

type HyperParameterSpecification

type HyperParameterSpecification struct {

	// The name of this hyperparameter. The name must be unique.
	//
	// This member is required.
	Name *string

	// The type of this hyperparameter. The valid types are Integer, Continuous,
	// Categorical, and FreeText.
	//
	// This member is required.
	Type ParameterType

	// The default value for this hyperparameter. If a default value is specified, a
	// hyperparameter cannot be required.
	DefaultValue *string

	// A brief description of the hyperparameter.
	Description *string

	// Indicates whether this hyperparameter is required.
	IsRequired *bool

	// Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
	IsTunable *bool

	// The allowed range for this hyperparameter.
	Range *ParameterRange
}

Defines a hyperparameter to be used by an algorithm.

type HyperParameterTrainingJobDefinition

type HyperParameterTrainingJobDefinition struct {

	// The HyperParameterAlgorithmSpecification object that specifies the resource
	// algorithm to use for the training jobs that the tuning job launches.
	//
	// This member is required.
	AlgorithmSpecification *HyperParameterAlgorithmSpecification

	// Specifies the path to the Amazon S3 bucket where you store model artifacts from
	// the training jobs that the tuning job launches.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The resources, including the compute instances and storage volumes, to use for
	// the training jobs that the tuning job launches. Storage volumes store model
	// artifacts and incremental states. Training algorithms might also use storage
	// volumes for scratch space. If you want Amazon SageMaker to use the storage
	// volume to store the training data, choose File as the TrainingInputMode in the
	// algorithm specification. For distributed training algorithms, specify an
	// instance count greater than 1.
	//
	// This member is required.
	ResourceConfig *ResourceConfig

	// The Amazon Resource Name (ARN) of the IAM role associated with the training jobs
	// that the tuning job launches.
	//
	// This member is required.
	RoleArn *string

	// Specifies a limit to how long a model hyperparameter training job can run. It
	// also specifies how long you are willing to wait for a managed spot training job
	// to complete. When the job reaches the a limit, Amazon SageMaker ends the
	// training job. Use this API to cap model training costs.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// The job definition name.
	DefinitionName *string

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True. Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// A Boolean indicating whether managed spot training is enabled (True) or not
	// (False).
	EnableManagedSpotTraining *bool

	// Isolates the training container. No inbound or outbound network calls can be
	// made, except for calls between peers within a training cluster for distributed
	// training. If network isolation is used for training jobs that are configured to
	// use a VPC, Amazon SageMaker downloads and uploads customer data and model
	// artifacts through the specified VPC, but the training container does not have
	// network access.
	EnableNetworkIsolation *bool

	// Specifies ranges of integer, continuous, and categorical hyperparameters that a
	// hyperparameter tuning job searches. The hyperparameter tuning job launches
	// training jobs with hyperparameter values within these ranges to find the
	// combination of values that result in the training job with the best performance
	// as measured by the objective metric of the hyperparameter tuning job. You can
	// specify a maximum of 20 hyperparameters that a hyperparameter tuning job can
	// search over. Every possible value of a categorical parameter range counts
	// against this limit.
	HyperParameterRanges *ParameterRanges

	// An array of Channel objects that specify the input for the training jobs that
	// the tuning job launches.
	InputDataConfig []*Channel

	// Specifies the values of hyperparameters that do not change for the tuning job.
	StaticHyperParameters map[string]*string

	// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
	// tuning uses the value of this metric to evaluate the training jobs it launches,
	// and returns the training job that results in either the highest or lowest value
	// for this metric, depending on the value you specify for the Type parameter.
	TuningObjective *HyperParameterTuningJobObjective

	// The VpcConfig object that specifies the VPC that you want the training jobs that
	// this hyperparameter tuning job launches to connect to. Control access to and
	// from your training container by configuring the VPC. For more information, see
	// Protect Training Jobs by Using an Amazon Virtual Private Cloud
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html).
	VpcConfig *VpcConfig
}

Defines the training jobs launched by a hyperparameter tuning job.

type HyperParameterTrainingJobSummary

type HyperParameterTrainingJobSummary struct {

	// The date and time that the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// A list of the hyperparameters for which you specified ranges to search.
	//
	// This member is required.
	TunedHyperParameters map[string]*string

	// The reason that the training job failed.
	FailureReason *string

	// The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value
	// of the objective metric of the tuning job that launched this training job.
	FinalHyperParameterTuningJobObjectiveMetric *FinalHyperParameterTuningJobObjectiveMetric

	// The status of the objective metric for the training job:
	//
	//     * Succeeded: The
	// final objective metric for the training job was evaluated by the hyperparameter
	// tuning job and used in the hyperparameter tuning process.
	//
	//     * Pending: The
	// training job is in progress and evaluation of its final objective metric is
	// pending.
	//
	//     * Failed: The final objective metric for the training job was not
	// evaluated, and was not used in the hyperparameter tuning process. This typically
	// occurs when the training job failed or did not emit an objective metric.
	ObjectiveStatus ObjectiveStatus

	// Specifies the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker
	// detects a job failure.
	TrainingEndTime *time.Time

	// The training job definition name.
	TrainingJobDefinitionName *string

	// The date and time that the training job started.
	TrainingStartTime *time.Time

	// The HyperParameter tuning job that launched the training job.
	TuningJobName *string
}

Specifies summary information about a training job.

type HyperParameterTuningJobConfig

type HyperParameterTuningJobConfig struct {

	// The ResourceLimits object that specifies the maximum number of training jobs and
	// parallel training jobs for this tuning job.
	//
	// This member is required.
	ResourceLimits *ResourceLimits

	// Specifies how hyperparameter tuning chooses the combinations of hyperparameter
	// values to use for the training job it launches. To use the Bayesian search
	// strategy, set this to Bayesian. To randomly search, set it to Random. For
	// information about search strategies, see How Hyperparameter Tuning Works
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html).
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The HyperParameterTuningJobObjective object that specifies the objective metric
	// for this tuning job.
	HyperParameterTuningJobObjective *HyperParameterTuningJobObjective

	// The ParameterRanges object that specifies the ranges of hyperparameters that
	// this tuning job searches.
	ParameterRanges *ParameterRanges

	// Specifies whether to use early stopping for training jobs launched by the
	// hyperparameter tuning job. This can be one of the following values (the default
	// value is OFF): OFF Training jobs launched by the hyperparameter tuning job do
	// not use early stopping. AUTO Amazon SageMaker stops training jobs launched by
	// the hyperparameter tuning job when they are unlikely to perform better than
	// previously completed training jobs. For more information, see Stop Training Jobs
	// Early
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html).
	TrainingJobEarlyStoppingType TrainingJobEarlyStoppingType

	// The tuning job's completion criteria.
	TuningJobCompletionCriteria *TuningJobCompletionCriteria
}

Configures a hyperparameter tuning job.

type HyperParameterTuningJobObjective

type HyperParameterTuningJobObjective struct {

	// The name of the metric to use for the objective metric.
	//
	// This member is required.
	MetricName *string

	// Whether to minimize or maximize the objective metric.
	//
	// This member is required.
	Type HyperParameterTuningJobObjectiveType
}

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.

type HyperParameterTuningJobObjectiveType

type HyperParameterTuningJobObjectiveType string
const (
	HyperParameterTuningJobObjectiveTypeMaximize HyperParameterTuningJobObjectiveType = "Maximize"
	HyperParameterTuningJobObjectiveTypeMinimize HyperParameterTuningJobObjectiveType = "Minimize"
)

Enum values for HyperParameterTuningJobObjectiveType

type HyperParameterTuningJobSortByOptions

type HyperParameterTuningJobSortByOptions string
const (
	HyperParameterTuningJobSortByOptionsName         HyperParameterTuningJobSortByOptions = "Name"
	HyperParameterTuningJobSortByOptionsStatus       HyperParameterTuningJobSortByOptions = "Status"
	HyperParameterTuningJobSortByOptionsCreationtime HyperParameterTuningJobSortByOptions = "CreationTime"
)

Enum values for HyperParameterTuningJobSortByOptions

type HyperParameterTuningJobStatus

type HyperParameterTuningJobStatus string
const (
	HyperParameterTuningJobStatusCompleted   HyperParameterTuningJobStatus = "Completed"
	HyperParameterTuningJobStatusIn_progress HyperParameterTuningJobStatus = "InProgress"
	HyperParameterTuningJobStatusFailed      HyperParameterTuningJobStatus = "Failed"
	HyperParameterTuningJobStatusStopped     HyperParameterTuningJobStatus = "Stopped"
	HyperParameterTuningJobStatusStopping    HyperParameterTuningJobStatus = "Stopping"
)

Enum values for HyperParameterTuningJobStatus

type HyperParameterTuningJobStrategyType

type HyperParameterTuningJobStrategyType string
const (
	HyperParameterTuningJobStrategyTypeBayesian HyperParameterTuningJobStrategyType = "Bayesian"
	HyperParameterTuningJobStrategyTypeRandom   HyperParameterTuningJobStrategyType = "Random"
)

Enum values for HyperParameterTuningJobStrategyType

type HyperParameterTuningJobSummary

type HyperParameterTuningJobSummary struct {

	// The date and time that the tuning job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobArn *string

	// The name of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobName *string

	// The status of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobStatus HyperParameterTuningJobStatus

	// The ObjectiveStatusCounters object that specifies the numbers of training jobs,
	// categorized by objective metric status, that this tuning job launched.
	//
	// This member is required.
	ObjectiveStatusCounters *ObjectiveStatusCounters

	// Specifies the search strategy hyperparameter tuning uses to choose which
	// hyperparameters to use for each iteration. Currently, the only valid value is
	// Bayesian.
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The TrainingJobStatusCounters object that specifies the numbers of training
	// jobs, categorized by status, that this tuning job launched.
	//
	// This member is required.
	TrainingJobStatusCounters *TrainingJobStatusCounters

	// The date and time that the tuning job ended.
	HyperParameterTuningEndTime *time.Time

	// The date and time that the tuning job was modified.
	LastModifiedTime *time.Time

	// The ResourceLimits object that specifies the maximum number of training jobs and
	// parallel training jobs allowed for this tuning job.
	ResourceLimits *ResourceLimits
}

Provides summary information about a hyperparameter tuning job.

type HyperParameterTuningJobWarmStartConfig

type HyperParameterTuningJobWarmStartConfig struct {

	// An array of hyperparameter tuning jobs that are used as the starting point for
	// the new hyperparameter tuning job. For more information about warm starting a
	// hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a
	// Starting Point
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html).
	// Hyperparameter tuning jobs created before October 1, 2018 cannot be used as
	// parent jobs for warm start tuning jobs.
	//
	// This member is required.
	ParentHyperParameterTuningJobs []*ParentHyperParameterTuningJob

	// Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new
	// hyperparameter tuning job uses the same input data and training image as the
	// parent tuning jobs. You can change the hyperparameter ranges to search and the
	// maximum number of training jobs that the hyperparameter tuning job launches. You
	// cannot use a new version of the training algorithm, unless the changes in the
	// new version do not affect the algorithm itself. For example, changes that
	// improve logging or adding support for a different data format are allowed. You
	// can also change hyperparameters from tunable to static, and from static to
	// tunable, but the total number of static plus tunable hyperparameters must remain
	// the same as it is in all parent jobs. The objective metric for the new tuning
	// job must be the same as for all parent jobs. TRANSFER_LEARNING The new
	// hyperparameter tuning job can include input data, hyperparameter ranges, maximum
	// number of concurrent training jobs, and maximum number of training jobs that are
	// different than those of its parent hyperparameter tuning jobs. The training
	// image can also be a different version from the version used in the parent
	// hyperparameter tuning job. You can also change hyperparameters from tunable to
	// static, and from static to tunable, but the total number of static plus tunable
	// hyperparameters must remain the same as it is in all parent jobs. The objective
	// metric for the new tuning job must be the same as for all parent jobs.
	//
	// This member is required.
	WarmStartType HyperParameterTuningJobWarmStartType
}

Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

type HyperParameterTuningJobWarmStartType

type HyperParameterTuningJobWarmStartType string
const (
	HyperParameterTuningJobWarmStartTypeIdentical_data_and_algorithm HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"
	HyperParameterTuningJobWarmStartTypeTransfer_learning            HyperParameterTuningJobWarmStartType = "TransferLearning"
)

Enum values for HyperParameterTuningJobWarmStartType

type InferenceSpecification

type InferenceSpecification struct {

	// The Amazon ECR registry path of the Docker image that contains the inference
	// code.
	//
	// This member is required.
	Containers []*ModelPackageContainerDefinition

	// The supported MIME types for the input data.
	//
	// This member is required.
	SupportedContentTypes []*string

	// A list of the instance types that are used to generate inferences in real-time.
	//
	// This member is required.
	SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType

	// The supported MIME types for the output data.
	//
	// This member is required.
	SupportedResponseMIMETypes []*string

	// A list of the instance types on which a transformation job can be run or on
	// which an endpoint can be deployed.
	//
	// This member is required.
	SupportedTransformInstanceTypes []TransformInstanceType
}

Defines how to perform inference generation after a training job is run.

type InputConfig

type InputConfig struct {

	// Specifies the name and shape of the expected data inputs for your trained model
	// with a JSON dictionary form. The data inputs are InputConfig$Framework
	// specific.
	//
	//     * TensorFlow: You must specify the name and shape (NHWC format)
	// of the expected data inputs using a dictionary format for your trained model.
	// The dictionary formats required for the console and CLI are different.
	//
	//
	// * Examples for one input:
	//
	//             * If using the console,
	// {"input":[1,1024,1024,3]}
	//
	//             * If using the CLI,
	// {\"input\":[1,1024,1024,3]}
	//
	//         * Examples for two inputs:
	//
	//             *
	// If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
	//
	//             *
	// If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
	//
	//     * KERAS:
	// You must specify the name and shape (NCHW format) of expected data inputs using
	// a dictionary format for your trained model. Note that while Keras model
	// artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig
	// should be specified in NCHW (channel-first) format. The dictionary formats
	// required for the console and CLI are different.
	//
	//         * Examples for one
	// input:
	//
	//             * If using the console, {"input_1":[1,3,224,224]}
	//
	//
	// * If using the CLI, {\"input_1\":[1,3,224,224]}
	//
	//         * Examples for two
	// inputs:
	//
	//             * If using the console, {"input_1": [1,3,224,224],
	// "input_2":[1,3,224,224]}
	//
	//             * If using the CLI, {\"input_1\":
	// [1,3,224,224], \"input_2\":[1,3,224,224]}
	//
	//     * MXNET/ONNX: You must specify
	// the name and shape (NCHW format) of the expected data inputs in order using a
	// dictionary format for your trained model. The dictionary formats required for
	// the console and CLI are different.
	//
	//         * Examples for one input:
	//
	//
	// * If using the console, {"data":[1,3,1024,1024]}
	//
	//             * If using the
	// CLI, {\"data\":[1,3,1024,1024]}
	//
	//         * Examples for two inputs:
	//
	//
	// * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
	//
	//             *
	// If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
	//
	//     * PyTorch:
	// You can either specify the name and shape (NCHW format) of expected data inputs
	// in order using a dictionary format for your trained model or you can specify the
	// shape only using a list format. The dictionary formats required for the console
	// and CLI are different. The list formats for the console and CLI are the same.
	//
	//
	// * Examples for one input in dictionary format:
	//
	//             * If using the
	// console, {"input0":[1,3,224,224]}
	//
	//             * If using the CLI,
	// {\"input0\":[1,3,224,224]}
	//
	//         * Example for one input in list format:
	// [[1,3,224,224]]
	//
	//         * Examples for two inputs in dictionary format:
	//
	//
	// * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
	//
	//
	// * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
	//
	//
	// * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
	//
	//     *
	// XGBOOST: input data name and shape are not needed.
	//
	// This member is required.
	DataInputConfig *string

	// Identifies the framework in which the model was trained. For example:
	// TENSORFLOW.
	//
	// This member is required.
	Framework Framework

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	//
	// This member is required.
	S3Uri *string
}

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

type InstanceType

type InstanceType string
const (
	InstanceTypeMl_t2_medium    InstanceType = "ml.t2.medium"
	InstanceTypeMl_t2_large     InstanceType = "ml.t2.large"
	InstanceTypeMl_t2_xlarge    InstanceType = "ml.t2.xlarge"
	InstanceTypeMl_t2_2xlarge   InstanceType = "ml.t2.2xlarge"
	InstanceTypeMl_t3_medium    InstanceType = "ml.t3.medium"
	InstanceTypeMl_t3_large     InstanceType = "ml.t3.large"
	InstanceTypeMl_t3_xlarge    InstanceType = "ml.t3.xlarge"
	InstanceTypeMl_t3_2xlarge   InstanceType = "ml.t3.2xlarge"
	InstanceTypeMl_m4_xlarge    InstanceType = "ml.m4.xlarge"
	InstanceTypeMl_m4_2xlarge   InstanceType = "ml.m4.2xlarge"
	InstanceTypeMl_m4_4xlarge   InstanceType = "ml.m4.4xlarge"
	InstanceTypeMl_m4_10xlarge  InstanceType = "ml.m4.10xlarge"
	InstanceTypeMl_m4_16xlarge  InstanceType = "ml.m4.16xlarge"
	InstanceTypeMl_m5_xlarge    InstanceType = "ml.m5.xlarge"
	InstanceTypeMl_m5_2xlarge   InstanceType = "ml.m5.2xlarge"
	InstanceTypeMl_m5_4xlarge   InstanceType = "ml.m5.4xlarge"
	InstanceTypeMl_m5_12xlarge  InstanceType = "ml.m5.12xlarge"
	InstanceTypeMl_m5_24xlarge  InstanceType = "ml.m5.24xlarge"
	InstanceTypeMl_c4_xlarge    InstanceType = "ml.c4.xlarge"
	InstanceTypeMl_c4_2xlarge   InstanceType = "ml.c4.2xlarge"
	InstanceTypeMl_c4_4xlarge   InstanceType = "ml.c4.4xlarge"
	InstanceTypeMl_c4_8xlarge   InstanceType = "ml.c4.8xlarge"
	InstanceTypeMl_c5_xlarge    InstanceType = "ml.c5.xlarge"
	InstanceTypeMl_c5_2xlarge   InstanceType = "ml.c5.2xlarge"
	InstanceTypeMl_c5_4xlarge   InstanceType = "ml.c5.4xlarge"
	InstanceTypeMl_c5_9xlarge   InstanceType = "ml.c5.9xlarge"
	InstanceTypeMl_c5_18xlarge  InstanceType = "ml.c5.18xlarge"
	InstanceTypeMl_c5d_xlarge   InstanceType = "ml.c5d.xlarge"
	InstanceTypeMl_c5d_2xlarge  InstanceType = "ml.c5d.2xlarge"
	InstanceTypeMl_c5d_4xlarge  InstanceType = "ml.c5d.4xlarge"
	InstanceTypeMl_c5d_9xlarge  InstanceType = "ml.c5d.9xlarge"
	InstanceTypeMl_c5d_18xlarge InstanceType = "ml.c5d.18xlarge"
	InstanceTypeMl_p2_xlarge    InstanceType = "ml.p2.xlarge"
	InstanceTypeMl_p2_8xlarge   InstanceType = "ml.p2.8xlarge"
	InstanceTypeMl_p2_16xlarge  InstanceType = "ml.p2.16xlarge"
	InstanceTypeMl_p3_2xlarge   InstanceType = "ml.p3.2xlarge"
	InstanceTypeMl_p3_8xlarge   InstanceType = "ml.p3.8xlarge"
	InstanceTypeMl_p3_16xlarge  InstanceType = "ml.p3.16xlarge"
)

Enum values for InstanceType

type IntegerParameterRange

type IntegerParameterRange struct {

	// The maximum value of the hyperparameter to search.
	//
	// This member is required.
	MaxValue *string

	// The minimum value of the hyperparameter to search.
	//
	// This member is required.
	MinValue *string

	// The name of the hyperparameter to search.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type).
	// One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses
	// the best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0.
	ScalingType HyperParameterScalingType
}

For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.

type IntegerParameterRangeSpecification

type IntegerParameterRangeSpecification struct {

	// The maximum integer value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum integer value allowed.
	//
	// This member is required.
	MinValue *string
}

Defines the possible values for an integer hyperparameter.

type JoinSource

type JoinSource string
const (
	JoinSourceInput JoinSource = "Input"
	JoinSourceNone  JoinSource = "None"
)

Enum values for JoinSource

type JupyterServerAppSettings

type JupyterServerAppSettings struct {

	// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
	// image created on the instance.
	DefaultResourceSpec *ResourceSpec
}

Jupyter server's app settings.

type KernelGatewayAppSettings

type KernelGatewayAppSettings struct {

	// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
	// image created on the instance.
	DefaultResourceSpec *ResourceSpec
}

The kernel gateway app settings.

type LabelCounters

type LabelCounters struct {

	// The total number of objects that could not be labeled due to an error.
	FailedNonRetryableError *int32

	// The total number of objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of objects labeled by automated data labeling.
	MachineLabeled *int32

	// The total number of objects labeled.
	TotalLabeled *int32

	// The total number of objects not yet labeled.
	Unlabeled *int32
}

Provides a breakdown of the number of objects labeled.

type LabelCountersForWorkteam

type LabelCountersForWorkteam struct {

	// The total number of data objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of data objects that need to be labeled by a human worker.
	PendingHuman *int32

	// The total number of tasks in the labeling job.
	Total *int32
}

Provides counts for human-labeled tasks in the labeling job.

type LabelingJobAlgorithmsConfig

type LabelingJobAlgorithmsConfig struct {

	// Specifies the Amazon Resource Name (ARN) of the algorithm used for
	// auto-labeling. You must select one of the following ARNs:
	//
	//     * Image
	// classification
	// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
	//
	//
	// * Text classification
	// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
	//
	//
	// * Object detection
	// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
	//
	//
	// * Semantic Segmentation
	// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
	//
	// This member is required.
	LabelingJobAlgorithmSpecificationArn *string

	// At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon
	// Resource Nam (ARN) of the final model used for auto-labeling. You can use this
	// model as the starting point for subsequent similar jobs by providing the ARN of
	// the model here.
	InitialActiveLearningModelArn *string

	// Provides configuration information for a labeling job.
	LabelingJobResourceConfig *LabelingJobResourceConfig
}

Provides configuration information for auto-labeling of your data objects. A LabelingJobAlgorithmsConfig object must be supplied in order to use auto-labeling.

type LabelingJobDataAttributes

type LabelingJobDataAttributes struct {

	// Declares that your content is free of personally identifiable information or
	// adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers
	// that can view your task based on this information.
	ContentClassifiers []ContentClassifier
}

Attributes of the data specified by the customer. Use these to describe the data to be labeled.

type LabelingJobDataSource

type LabelingJobDataSource struct {

	// The Amazon S3 location of the input data objects.
	S3DataSource *LabelingJobS3DataSource
}

Provides information about the location of input data.

type LabelingJobForWorkteamSummary

type LabelingJobForWorkteamSummary struct {

	// The date and time that the labeling job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A unique identifier for a labeling job. You can use this to refer to a specific
	// labeling job.
	//
	// This member is required.
	JobReferenceCode *string

	//
	//
	// This member is required.
	WorkRequesterAccountId *string

	// Provides information about the progress of a labeling job.
	LabelCounters *LabelCountersForWorkteam

	// The name of the labeling job that the work team is assigned to.
	LabelingJobName *string

	// The configured number of workers per data object.
	NumberOfHumanWorkersPerDataObject *int32
}

Provides summary information for a work team.

type LabelingJobInputConfig

type LabelingJobInputConfig struct {

	// The location of the input data.
	//
	// This member is required.
	DataSource *LabelingJobDataSource

	// Attributes of the data specified by the customer.
	DataAttributes *LabelingJobDataAttributes
}

Input configuration information for a labeling job.

type LabelingJobOutput

type LabelingJobOutput struct {

	// The Amazon S3 bucket location of the manifest file for labeled data.
	//
	// This member is required.
	OutputDatasetS3Uri *string

	// The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model
	// trained as part of automated data labeling.
	FinalActiveLearningModelArn *string
}

Specifies the location of the output produced by the labeling job.

type LabelingJobOutputConfig

type LabelingJobOutputConfig struct {

	// The Amazon S3 location to write output data.
	//
	// This member is required.
	S3OutputPath *string

	// The AWS Key Management Service ID of the key used to encrypt the output data, if
	// any. If you use a KMS key ID or an alias of your master key, the Amazon
	// SageMaker execution role must include permissions to call kms:Encrypt. If you
	// don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon
	// S3 for your role's account. Amazon SageMaker uses server-side encryption with
	// KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an
	// s3:PutObject permission that only allows objects with server-side encryption,
	// set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more
	// information, see KMS-Managed Encryption Keys
	// (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the
	// Amazon Simple Storage Service Developer Guide. The KMS key policy must grant
	// permission to the IAM role that you specify in your CreateLabelingJob request.
	// For more information, see Using Key Policies in AWS KMS
	// (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the
	// AWS Key Management Service Developer Guide.
	KmsKeyId *string
}

Output configuration information for a labeling job.

type LabelingJobResourceConfig

type LabelingJobResourceConfig struct {

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt data on the storage volume attached to the ML compute instance(s) that
	// run the training job. The VolumeKmsKeyId can be any of the following formats:
	//
	//
	// * // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//
	//     * // Amazon Resource
	// Name (ARN) of a KMS Key
	// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string
}

Provides configuration information for labeling jobs.

type LabelingJobS3DataSource

type LabelingJobS3DataSource struct {

	// The Amazon S3 location of the manifest file that describes the input data
	// objects.
	//
	// This member is required.
	ManifestS3Uri *string
}

The Amazon S3 location of the input data objects.

type LabelingJobStatus

type LabelingJobStatus string
const (
	LabelingJobStatusInitializing LabelingJobStatus = "Initializing"
	LabelingJobStatusIn_progress  LabelingJobStatus = "InProgress"
	LabelingJobStatusCompleted    LabelingJobStatus = "Completed"
	LabelingJobStatusFailed       LabelingJobStatus = "Failed"
	LabelingJobStatusStopping     LabelingJobStatus = "Stopping"
	LabelingJobStatusStopped      LabelingJobStatus = "Stopped"
)

Enum values for LabelingJobStatus

type LabelingJobStoppingConditions

type LabelingJobStoppingConditions struct {

	// The maximum number of objects that can be labeled by human workers.
	MaxHumanLabeledObjectCount *int32

	// The maximum number of input data objects that should be labeled.
	MaxPercentageOfInputDatasetLabeled *int32
}

A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling. Labeling jobs fail after 30 days with an appropriate client error message.

type LabelingJobSummary

type LabelingJobSummary struct {

	// The date and time that the job was created (timestamp).
	//
	// This member is required.
	CreationTime *time.Time

	// Counts showing the progress of the labeling job.
	//
	// This member is required.
	LabelCounters *LabelCounters

	// The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
	//
	// This member is required.
	LabelingJobArn *string

	// The name of the labeling job.
	//
	// This member is required.
	LabelingJobName *string

	// The current status of the labeling job.
	//
	// This member is required.
	LabelingJobStatus LabelingJobStatus

	// The date and time that the job was last modified (timestamp).
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of a Lambda function. The function is run before
	// each data object is sent to a worker.
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// The Amazon Resource Name (ARN) of the work team assigned to the job.
	//
	// This member is required.
	WorkteamArn *string

	// The Amazon Resource Name (ARN) of the Lambda function used to consolidate the
	// annotations from individual workers into a label for a data object. For more
	// information, see Annotation Consolidation
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html).
	AnnotationConsolidationLambdaArn *string

	// If the LabelingJobStatus field is Failed, this field contains a description of
	// the error.
	FailureReason *string

	// Input configuration for the labeling job.
	InputConfig *LabelingJobInputConfig

	// The location of the output produced by the labeling job.
	LabelingJobOutput *LabelingJobOutput
}

Provides summary information about a labeling job.

type ListCompilationJobsSortBy

type ListCompilationJobsSortBy string
const (
	ListCompilationJobsSortByName          ListCompilationJobsSortBy = "Name"
	ListCompilationJobsSortByCreation_time ListCompilationJobsSortBy = "CreationTime"
	ListCompilationJobsSortByStatus        ListCompilationJobsSortBy = "Status"
)

Enum values for ListCompilationJobsSortBy

type ListLabelingJobsForWorkteamSortByOptions

type ListLabelingJobsForWorkteamSortByOptions string
const (
	ListLabelingJobsForWorkteamSortByOptionsCreation_time ListLabelingJobsForWorkteamSortByOptions = "CreationTime"
)

Enum values for ListLabelingJobsForWorkteamSortByOptions

type ListWorkforcesSortByOptions

type ListWorkforcesSortByOptions string
const (
	ListWorkforcesSortByOptionsName       ListWorkforcesSortByOptions = "Name"
	ListWorkforcesSortByOptionsCreatedate ListWorkforcesSortByOptions = "CreateDate"
)

Enum values for ListWorkforcesSortByOptions

type ListWorkteamsSortByOptions

type ListWorkteamsSortByOptions string
const (
	ListWorkteamsSortByOptionsName       ListWorkteamsSortByOptions = "Name"
	ListWorkteamsSortByOptionsCreatedate ListWorkteamsSortByOptions = "CreateDate"
)

Enum values for ListWorkteamsSortByOptions

type MemberDefinition

type MemberDefinition struct {

	// The Amazon Cognito user group that is part of the work team.
	CognitoMemberDefinition *CognitoMemberDefinition

	// A list user groups that exist in your OIDC Identity Provider (IdP). One to ten
	// groups can be used to create a single private work team. When you add a user
	// group to the list of Groups, you can add that user group to one or more private
	// work teams. If you add a user group to a private work team, all workers in that
	// user group are added to the work team.
	OidcMemberDefinition *OidcMemberDefinition
}

Defines the Amazon Cognito user group that is part of a work team.

type MetricData

type MetricData struct {

	// The name of the metric.
	MetricName *string

	// The date and time that the algorithm emitted the metric.
	Timestamp *time.Time

	// The value of the metric.
	Value *float32
}

The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.

type MetricDefinition

type MetricDefinition struct {

	// The name of the metric.
	//
	// This member is required.
	Name *string

	// A regular expression that searches the output of a training job and gets the
	// value of the metric. For more information about using regular expressions to
	// define metrics, see Defining Objective Metrics
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html).
	//
	// This member is required.
	Regex *string
}

Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.

type ModelArtifacts

type ModelArtifacts struct {

	// The path of the S3 object that contains the model artifacts. For example,
	// s3://bucket-name/keynameprefix/model.tar.gz.
	//
	// This member is required.
	S3ModelArtifacts *string
}

Provides information about the location that is configured for storing model artifacts. Model artifacts are the output that results from training a model, and typically consist of trained parameters, a model defintion that desribes how to compute inferences, and other metadata.

type ModelClientConfig

type ModelClientConfig struct {

	// The maximum number of retries when invocation requests are failing.
	InvocationsMaxRetries *int32

	// The timeout value in seconds for an invocation request.
	InvocationsTimeoutInSeconds *int32
}

Configures the timeout and maximum number of retries for processing a transform job invocation.

type ModelPackageContainerDefinition

type ModelPackageContainerDefinition struct {

	// The Amazon EC2 Container Registry (Amazon ECR) path where inference code is
	// stored. If you are using your own custom algorithm instead of an algorithm
	// provided by Amazon SageMaker, the inference code must meet Amazon SageMaker
	// requirements. Amazon SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see Using
	// Your Own Algorithms with Amazon SageMaker
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
	//
	// This member is required.
	Image *string

	// The DNS host name for the Docker container.
	ContainerHostname *string

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	ImageDigest *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive
	// (.tar.gz suffix).
	ModelDataUrl *string

	// The AWS Marketplace product ID of the model package.
	ProductId *string
}

Describes the Docker container for the model package.

type ModelPackageSortBy

type ModelPackageSortBy string
const (
	ModelPackageSortByName          ModelPackageSortBy = "Name"
	ModelPackageSortByCreation_time ModelPackageSortBy = "CreationTime"
)

Enum values for ModelPackageSortBy

type ModelPackageStatus

type ModelPackageStatus string
const (
	ModelPackageStatusPending     ModelPackageStatus = "Pending"
	ModelPackageStatusIn_progress ModelPackageStatus = "InProgress"
	ModelPackageStatusCompleted   ModelPackageStatus = "Completed"
	ModelPackageStatusFailed      ModelPackageStatus = "Failed"
	ModelPackageStatusDeleting    ModelPackageStatus = "Deleting"
)

Enum values for ModelPackageStatus

type ModelPackageStatusDetails

type ModelPackageStatusDetails struct {

	// The validation status of the model package.
	//
	// This member is required.
	ValidationStatuses []*ModelPackageStatusItem

	// The status of the scan of the Docker image container for the model package.
	ImageScanStatuses []*ModelPackageStatusItem
}

Specifies the validation and image scan statuses of the model package.

type ModelPackageStatusItem

type ModelPackageStatusItem struct {

	// The name of the model package for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedModelPackageStatus

	// if the overall status is Failed, the reason for the failure.
	FailureReason *string
}

Represents the overall status of a model package.

type ModelPackageSummary

type ModelPackageSummary struct {

	// A timestamp that shows when the model package was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model package.
	//
	// This member is required.
	ModelPackageArn *string

	// The name of the model package.
	//
	// This member is required.
	ModelPackageName *string

	// The overall status of the model package.
	//
	// This member is required.
	ModelPackageStatus ModelPackageStatus

	// A brief description of the model package.
	ModelPackageDescription *string
}

Provides summary information about a model package.

type ModelPackageValidationProfile

type ModelPackageValidationProfile struct {

	// The name of the profile for the model package.
	//
	// This member is required.
	ProfileName *string

	// The TransformJobDefinition object that describes the transform job used for the
	// validation of the model package.
	//
	// This member is required.
	TransformJobDefinition *TransformJobDefinition
}

Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package. The data provided in the validation profile is made available to your buyers on AWS Marketplace.

type ModelPackageValidationSpecification

type ModelPackageValidationSpecification struct {

	// An array of ModelPackageValidationProfile objects, each of which specifies a
	// batch transform job that Amazon SageMaker runs to validate your model package.
	//
	// This member is required.
	ValidationProfiles []*ModelPackageValidationProfile

	// The IAM roles to be used for the validation of the model package.
	//
	// This member is required.
	ValidationRole *string
}

Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.

type ModelSortKey

type ModelSortKey string
const (
	ModelSortKeyName         ModelSortKey = "Name"
	ModelSortKeyCreationtime ModelSortKey = "CreationTime"
)

Enum values for ModelSortKey

type ModelSummary

type ModelSummary struct {

	// A timestamp that indicates when the model was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model.
	//
	// This member is required.
	ModelArn *string

	// The name of the model that you want a summary for.
	//
	// This member is required.
	ModelName *string
}

Provides summary information about a model.

type MonitoringAppSpecification

type MonitoringAppSpecification struct {

	// The container image to be run by the monitoring job.
	//
	// This member is required.
	ImageUri *string

	// An array of arguments for the container used to run the monitoring job.
	ContainerArguments []*string

	// Specifies the entrypoint for a container used to run the monitoring job.
	ContainerEntrypoint []*string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flatted json so that the
	// built-in container can use the converted data. Applicable only for the built-in
	// (first party) containers.
	RecordPreprocessorSourceUri *string
}

Container image configuration object for the monitoring job.

type MonitoringBaselineConfig

type MonitoringBaselineConfig struct {

	// The baseline constraint file in Amazon S3 that the current monitoring job should
	// validated against.
	ConstraintsResource *MonitoringConstraintsResource

	// The baseline statistics file in Amazon S3 that the current monitoring job should
	// be validated against.
	StatisticsResource *MonitoringStatisticsResource
}

Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.

type MonitoringClusterConfig

type MonitoringClusterConfig struct {

	// The number of ML compute instances to use in the model monitoring job. For
	// distributed processing jobs, specify a value greater than 1. The default value
	// is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume, in gigabytes, that you want to provision. You
	// must specify sufficient ML storage for your scenario.
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt data on the storage volume attached to the ML compute instance(s) that
	// run the model monitoring job.
	VolumeKmsKeyId *string
}

Configuration for the cluster used to run model monitoring jobs.

type MonitoringConstraintsResource

type MonitoringConstraintsResource struct {

	// The Amazon S3 URI for the constraints resource.
	S3Uri *string
}

The constraints resource for a monitoring job.

type MonitoringExecutionSortKey

type MonitoringExecutionSortKey string
const (
	MonitoringExecutionSortKeyCreation_time  MonitoringExecutionSortKey = "CreationTime"
	MonitoringExecutionSortKeyScheduled_time MonitoringExecutionSortKey = "ScheduledTime"
	MonitoringExecutionSortKeyStatus         MonitoringExecutionSortKey = "Status"
)

Enum values for MonitoringExecutionSortKey

type MonitoringExecutionSummary

type MonitoringExecutionSummary struct {

	// The time at which the monitoring job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A timestamp that indicates the last time the monitoring job was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The status of the monitoring job.
	//
	// This member is required.
	MonitoringExecutionStatus ExecutionStatus

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The time the monitoring job was scheduled.
	//
	// This member is required.
	ScheduledTime *time.Time

	// The name of teh endpoint used to run the monitoring job.
	EndpointName *string

	// Contains the reason a monitoring job failed, if it failed.
	FailureReason *string

	// The Amazon Resource Name (ARN) of the monitoring job.
	ProcessingJobArn *string
}

Summary of information about the last monitoring job to run.

type MonitoringInput

type MonitoringInput struct {

	// The endpoint for a monitoring job.
	//
	// This member is required.
	EndpointInput *EndpointInput
}

The inputs for a monitoring job.

type MonitoringJobDefinition

type MonitoringJobDefinition struct {

	// Configures the monitoring job to run a specified Docker container image.
	//
	// This member is required.
	MonitoringAppSpecification *MonitoringAppSpecification

	// The array of inputs for the monitoring job. Currently we support monitoring an
	// Amazon SageMaker Endpoint.
	//
	// This member is required.
	MonitoringInputs []*MonitoringInput

	// The array of outputs from the monitoring job to be uploaded to Amazon Simple
	// Storage Service (Amazon S3).
	//
	// This member is required.
	MonitoringOutputConfig *MonitoringOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to deploy
	// for a monitoring job. In distributed processing, you specify more than one
	// instance.
	//
	// This member is required.
	MonitoringResources *MonitoringResources

	// The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume
	// to perform tasks on your behalf.
	//
	// This member is required.
	RoleArn *string

	// Baseline configuration used to validate that the data conforms to the specified
	// constraints and statistics
	BaselineConfig *MonitoringBaselineConfig

	// Sets the environment variables in the Docker container.
	Environment map[string]*string

	// Specifies networking options for an monitoring job.
	NetworkConfig *NetworkConfig

	// Specifies a time limit for how long the monitoring job is allowed to run.
	StoppingCondition *MonitoringStoppingCondition
}

Defines the monitoring job.

type MonitoringOutput

type MonitoringOutput struct {

	// The Amazon S3 storage location where the results of a monitoring job are saved.
	//
	// This member is required.
	S3Output *MonitoringS3Output
}

The output object for a monitoring job.

type MonitoringOutputConfig

type MonitoringOutputConfig struct {

	// Monitoring outputs for monitoring jobs. This is where the output of the periodic
	// monitoring jobs is uploaded.
	//
	// This member is required.
	MonitoringOutputs []*MonitoringOutput

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt the model artifacts at rest using Amazon S3 server-side encryption.
	KmsKeyId *string
}

The output configuration for monitoring jobs.

type MonitoringResources

type MonitoringResources struct {

	// The configuration for the cluster resources used to run the processing job.
	//
	// This member is required.
	ClusterConfig *MonitoringClusterConfig
}

Identifies the resources to deploy for a monitoring job.

type MonitoringS3Output

type MonitoringS3Output struct {

	// The local path to the Amazon S3 storage location where Amazon SageMaker saves
	// the results of a monitoring job. LocalPath is an absolute path for the output
	// data.
	//
	// This member is required.
	LocalPath *string

	// A URI that identifies the Amazon S3 storage location where Amazon SageMaker
	// saves the results of a monitoring job.
	//
	// This member is required.
	S3Uri *string

	// Whether to upload the results of the monitoring job continuously or after the
	// job completes.
	S3UploadMode ProcessingS3UploadMode
}

Information about where and how you want to store the results of a monitoring job.

type MonitoringScheduleConfig

type MonitoringScheduleConfig struct {

	// Defines the monitoring job.
	//
	// This member is required.
	MonitoringJobDefinition *MonitoringJobDefinition

	// Configures the monitoring schedule.
	ScheduleConfig *ScheduleConfig
}

Configures the monitoring schedule and defines the monitoring job.

type MonitoringScheduleSortKey

type MonitoringScheduleSortKey string
const (
	MonitoringScheduleSortKeyName          MonitoringScheduleSortKey = "Name"
	MonitoringScheduleSortKeyCreation_time MonitoringScheduleSortKey = "CreationTime"
	MonitoringScheduleSortKeyStatus        MonitoringScheduleSortKey = "Status"
)

Enum values for MonitoringScheduleSortKey

type MonitoringScheduleSummary

type MonitoringScheduleSummary struct {

	// The creation time of the monitoring schedule.
	//
	// This member is required.
	CreationTime *time.Time

	// The last time the monitoring schedule was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleArn *string

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The status of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleStatus ScheduleStatus

	// The name of the endpoint using the monitoring schedule.
	EndpointName *string
}

Summarizes the monitoring schedule.

type MonitoringStatisticsResource

type MonitoringStatisticsResource struct {

	// The Amazon S3 URI for the statistics resource.
	S3Uri *string
}

The statistics resource for a monitoring job.

type MonitoringStoppingCondition

type MonitoringStoppingCondition struct {

	// The maximum runtime allowed in seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32
}

A time limit for how long the monitoring job is allowed to run before stopping.

type NestedFilters

type NestedFilters struct {

	// A list of filters. Each filter acts on a property. Filters must contain at least
	// one Filters value. For example, a NestedFilters call might include a filter on
	// the PropertyName parameter of the InputDataConfig property:
	// InputDataConfig.DataSource.S3DataSource.S3Uri.
	//
	// This member is required.
	Filters []*Filter

	// The name of the property to use in the nested filters. The value must match a
	// listed property name, such as InputDataConfig.
	//
	// This member is required.
	NestedPropertyName *string
}

A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API. For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:

*

'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',

* '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'

type NetworkConfig

type NetworkConfig struct {

	// Whether to encrypt all communications between distributed processing jobs.
	// Choose True to encrypt communications. Encryption provides greater security for
	// distributed processing jobs, but the processing might take longer.
	EnableInterContainerTrafficEncryption *bool

	// Whether to allow inbound and outbound network calls to and from the containers
	// used for the processing job.
	EnableNetworkIsolation *bool

	// Specifies a VPC that your training jobs and hosted models have access to.
	// Control access to and from your training and model containers by configuring the
	// VPC. For more information, see Protect Endpoints by Using an Amazon Virtual
	// Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html)
	// and Protect Training Jobs by Using an Amazon Virtual Private Cloud
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html).
	VpcConfig *VpcConfig
}

Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.

type NotebookInstanceAcceleratorType

type NotebookInstanceAcceleratorType string
const (
	NotebookInstanceAcceleratorTypeMl_eia1_medium NotebookInstanceAcceleratorType = "ml.eia1.medium"
	NotebookInstanceAcceleratorTypeMl_eia1_large  NotebookInstanceAcceleratorType = "ml.eia1.large"
	NotebookInstanceAcceleratorTypeMl_eia1_xlarge NotebookInstanceAcceleratorType = "ml.eia1.xlarge"
	NotebookInstanceAcceleratorTypeMl_eia2_medium NotebookInstanceAcceleratorType = "ml.eia2.medium"
	NotebookInstanceAcceleratorTypeMl_eia2_large  NotebookInstanceAcceleratorType = "ml.eia2.large"
	NotebookInstanceAcceleratorTypeMl_eia2_xlarge NotebookInstanceAcceleratorType = "ml.eia2.xlarge"
)

Enum values for NotebookInstanceAcceleratorType

type NotebookInstanceLifecycleConfigSortKey

type NotebookInstanceLifecycleConfigSortKey string
const (
	NotebookInstanceLifecycleConfigSortKeyName               NotebookInstanceLifecycleConfigSortKey = "Name"
	NotebookInstanceLifecycleConfigSortKeyCreation_time      NotebookInstanceLifecycleConfigSortKey = "CreationTime"
	NotebookInstanceLifecycleConfigSortKeyLast_modified_time NotebookInstanceLifecycleConfigSortKey = "LastModifiedTime"
)

Enum values for NotebookInstanceLifecycleConfigSortKey

type NotebookInstanceLifecycleConfigSortOrder

type NotebookInstanceLifecycleConfigSortOrder string
const (
	NotebookInstanceLifecycleConfigSortOrderAscending  NotebookInstanceLifecycleConfigSortOrder = "Ascending"
	NotebookInstanceLifecycleConfigSortOrderDescending NotebookInstanceLifecycleConfigSortOrder = "Descending"
)

Enum values for NotebookInstanceLifecycleConfigSortOrder

type NotebookInstanceLifecycleConfigSummary

type NotebookInstanceLifecycleConfigSummary struct {

	// The Amazon Resource Name (ARN) of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigArn *string

	// The name of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigName *string

	// A timestamp that tells when the lifecycle configuration was created.
	CreationTime *time.Time

	// A timestamp that tells when the lifecycle configuration was last modified.
	LastModifiedTime *time.Time
}

Provides a summary of a notebook instance lifecycle configuration.

type NotebookInstanceLifecycleHook

type NotebookInstanceLifecycleHook struct {

	// A base64-encoded string that contains a shell script for a notebook instance
	// lifecycle configuration.
	Content *string
}

Contains the notebook instance lifecycle configuration script. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html).

type NotebookInstanceSortKey

type NotebookInstanceSortKey string
const (
	NotebookInstanceSortKeyName          NotebookInstanceSortKey = "Name"
	NotebookInstanceSortKeyCreation_time NotebookInstanceSortKey = "CreationTime"
	NotebookInstanceSortKeyStatus        NotebookInstanceSortKey = "Status"
)

Enum values for NotebookInstanceSortKey

type NotebookInstanceSortOrder

type NotebookInstanceSortOrder string
const (
	NotebookInstanceSortOrderAscending  NotebookInstanceSortOrder = "Ascending"
	NotebookInstanceSortOrderDescending NotebookInstanceSortOrder = "Descending"
)

Enum values for NotebookInstanceSortOrder

type NotebookInstanceStatus

type NotebookInstanceStatus string
const (
	NotebookInstanceStatusPending   NotebookInstanceStatus = "Pending"
	NotebookInstanceStatusInservice NotebookInstanceStatus = "InService"
	NotebookInstanceStatusStopping  NotebookInstanceStatus = "Stopping"
	NotebookInstanceStatusStopped   NotebookInstanceStatus = "Stopped"
	NotebookInstanceStatusFailed    NotebookInstanceStatus = "Failed"
	NotebookInstanceStatusDeleting  NotebookInstanceStatus = "Deleting"
	NotebookInstanceStatusUpdating  NotebookInstanceStatus = "Updating"
)

Enum values for NotebookInstanceStatus

type NotebookInstanceSummary

type NotebookInstanceSummary struct {

	// The Amazon Resource Name (ARN) of the notebook instance.
	//
	// This member is required.
	NotebookInstanceArn *string

	// The name of the notebook instance that you want a summary for.
	//
	// This member is required.
	NotebookInstanceName *string

	// An array of up to three Git repositories associated with the notebook instance.
	// These can be either the names of Git repositories stored as resources in your
	// account, or the URL of Git repositories in AWS CodeCommit
	// (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any
	// other Git repository. These repositories are cloned at the same level as the
	// default repository of your notebook instance. For more information, see
	// Associating Git Repositories with Amazon SageMaker Notebook Instances
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html).
	AdditionalCodeRepositories []*string

	// A timestamp that shows when the notebook instance was created.
	CreationTime *time.Time

	// The Git repository associated with the notebook instance as its default code
	// repository. This can be either the name of a Git repository stored as a resource
	// in your account, or the URL of a Git repository in AWS CodeCommit
	// (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any
	// other Git repository. When you open a notebook instance, it opens in the
	// directory that contains this repository. For more information, see Associating
	// Git Repositories with Amazon SageMaker Notebook Instances
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html).
	DefaultCodeRepository *string

	// The type of ML compute instance that the notebook instance is running on.
	InstanceType InstanceType

	// A timestamp that shows when the notebook instance was last modified.
	LastModifiedTime *time.Time

	// The name of a notebook instance lifecycle configuration associated with this
	// notebook instance. For information about notebook instance lifestyle
	// configurations, see Step 2.1: (Optional) Customize a Notebook Instance
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html).
	NotebookInstanceLifecycleConfigName *string

	// The status of the notebook instance.
	NotebookInstanceStatus NotebookInstanceStatus

	// The URL that you use to connect to the Jupyter instance running in your notebook
	// instance.
	Url *string
}

Provides summary information for an Amazon SageMaker notebook instance.

type NotebookOutputOption

type NotebookOutputOption string
const (
	NotebookOutputOptionAllowed  NotebookOutputOption = "Allowed"
	NotebookOutputOptionDisabled NotebookOutputOption = "Disabled"
)

Enum values for NotebookOutputOption

type NotificationConfiguration

type NotificationConfiguration struct {

	// The ARN for the SNS topic to which notifications should be published.
	NotificationTopicArn *string
}

Configures SNS notifications of available or expiring work items for work teams.

type ObjectiveStatus

type ObjectiveStatus string
const (
	ObjectiveStatusSucceeded ObjectiveStatus = "Succeeded"
	ObjectiveStatusPending   ObjectiveStatus = "Pending"
	ObjectiveStatusFailed    ObjectiveStatus = "Failed"
)

Enum values for ObjectiveStatus

type ObjectiveStatusCounters

type ObjectiveStatusCounters struct {

	// The number of training jobs whose final objective metric was not evaluated and
	// used in the hyperparameter tuning process. This typically occurs when the
	// training job failed or did not emit an objective metric.
	Failed *int32

	// The number of training jobs that are in progress and pending evaluation of their
	// final objective metric.
	Pending *int32

	// The number of training jobs whose final objective metric was evaluated by the
	// hyperparameter tuning job and used in the hyperparameter tuning process.
	Succeeded *int32
}

Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.

type OidcConfig

type OidcConfig struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	//
	// This member is required.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	//
	// This member is required.
	ClientId *string

	// The OIDC IdP client secret used to configure your private workforce.
	//
	// This member is required.
	ClientSecret *string

	// The OIDC IdP issuer used to configure your private workforce.
	//
	// This member is required.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	//
	// This member is required.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	//
	// This member is required.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	//
	// This member is required.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	//
	// This member is required.
	UserInfoEndpoint *string
}

Use this parameter to configure your OIDC Identity Provider (IdP).

type OidcConfigForResponse

type OidcConfigForResponse struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	ClientId *string

	// The OIDC IdP issuer used to configure your private workforce.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	UserInfoEndpoint *string
}

Your Amazon Cognito workforce configuration.

type OidcMemberDefinition

type OidcMemberDefinition struct {

	// A list of comma seperated strings that identifies user groups in your OIDC IdP.
	// Each user group is made up of a group of private workers.
	//
	// This member is required.
	Groups []*string
}

A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.

type Operator

type Operator string
const (
	OperatorEquals                   Operator = "Equals"
	OperatorNot_equals               Operator = "NotEquals"
	OperatorGreater_than             Operator = "GreaterThan"
	OperatorGreater_than_or_equal_to Operator = "GreaterThanOrEqualTo"
	OperatorLess_than                Operator = "LessThan"
	OperatorLess_than_or_equal_to    Operator = "LessThanOrEqualTo"
	OperatorContains                 Operator = "Contains"
	OperatorExists                   Operator = "Exists"
	OperatorNot_exists               Operator = "NotExists"
	OperatorIn                       Operator = "In"
)

Enum values for Operator

type OrderKey

type OrderKey string
const (
	OrderKeyAscending  OrderKey = "Ascending"
	OrderKeyDescending OrderKey = "Descending"
)

Enum values for OrderKey

type OutputConfig

type OutputConfig struct {

	// Identifies the S3 bucket where you want Amazon SageMaker to store the model
	// artifacts. For example, s3://bucket-name/key-name-prefix.
	//
	// This member is required.
	S3OutputLocation *string

	// Specifies additional parameters for compiler options in JSON format. The
	// compiler options are TargetPlatform specific. It is required for NVIDIA
	// accelerators and highly recommended for CPU compliations. For any other cases,
	// it is optional to specify CompilerOptions.
	//
	//     * CPU: Compilation for CPU
	// supports the following compiler options.
	//
	//         * mcpu: CPU
	// micro-architecture. For example, {'mcpu': 'skylake-avx512'}
	//
	//         * mattr:
	// CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
	//
	//     * ARM: Details of
	// ARM CPU compilations.
	//
	//         * NEON: NEON is an implementation of the Advanced
	// SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']}
	// to the compiler options if compiling for ARM 32-bit platform with the NEON
	// support.
	//
	//     * NVIDIA: Compilation for NVIDIA GPU supports the following
	// compiler options.
	//
	//         * gpu_code: Specifies the targeted architecture.
	//
	//
	// * trt-ver: Specifies the TensorRT versions in x.y.z. format.
	//
	//         *
	// cuda-ver: Specifies the CUDA version in x.y format.
	//
	//     For example,
	// {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
	//
	//     * ANDROID:
	// Compilation for the Android OS supports the following compiler options:
	//
	//
	// * ANDROID_PLATFORM: Specifies the Android API levels. Available levels range
	// from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.
	//
	//         * mattr: Add
	// {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform
	// with NEON support.
	CompilerOptions *string

	// Identifies the target device or the machine learning instance that you want to
	// run your model on after the compilation has completed. Alternatively, you can
	// specify OS, architecture, and accelerator using TargetPlatform fields. It can be
	// used instead of TargetPlatform.
	TargetDevice TargetDevice

	// Contains information about a target platform that you want your model to run on,
	// such as OS, architecture, and accelerators. It is an alternative of
	// TargetDevice. The following examples show how to configure the TargetPlatform
	// and CompilerOptions JSON strings for popular target platforms:
	//
	//     * Raspberry
	// Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
	// "CompilerOptions": {'mattr': ['+neon']}
	//
	//     * Jetson TX2 "TargetPlatform":
	// {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions":
	// {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
	//
	//     * EC2
	// m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64",
	// "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'}
	//
	//     *
	// RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
	// "MALI"}
	//
	//     * ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch":
	// "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
	//
	//
	// * ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
	// "CompilerOptions": {'ANDROID_PLATFORM': 29}
	TargetPlatform *TargetPlatform
}

Contains information about the output location for the compiled model and the target device that the model runs on. TargetDevice and TargetPlatform are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from the TargetDevice list, use TargetPlatform to describe the platform of your edge device and CompilerOptions if there are specific settings that are required or recommended to use for particular TargetPlatform.

type OutputDataConfig

type OutputDataConfig struct {

	// Identifies the S3 path where you want Amazon SageMaker to store the model
	// artifacts. For example, s3://bucket-name/key-name-prefix.
	//
	// This member is required.
	S3OutputPath *string

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
	// KmsKeyId can be any of the following formats:
	//
	//     * // KMS Key ID
	// "1234abcd-12ab-34cd-56ef-1234567890ab"
	//
	//     * // Amazon Resource Name (ARN) of a
	// KMS Key
	// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	//
	//
	// * // KMS Key Alias "alias/ExampleAlias"
	//
	//     * // Amazon Resource Name (ARN) of
	// a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
	//
	// If you
	// use a KMS key ID or an alias of your master key, the Amazon SageMaker execution
	// role must include permissions to call kms:Encrypt. If you don't provide a KMS
	// key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's
	// account. Amazon SageMaker uses server-side encryption with KMS-managed keys for
	// OutputDataConfig. If you use a bucket policy with an s3:PutObject permission
	// that only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms". For more information, see
	// KMS-Managed Encryption Keys
	// (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the
	// Amazon Simple Storage Service Developer Guide. The KMS key policy must grant
	// permission to the IAM role that you specify in your CreateTrainingJob,
	// CreateTransformJob, or CreateHyperParameterTuningJob requests. For more
	// information, see Using Key Policies in AWS KMS
	// (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the
	// AWS Key Management Service Developer Guide.
	KmsKeyId *string
}

Provides information about how to store model training results (model artifacts).

type ParameterRange

type ParameterRange struct {

	// A CategoricalParameterRangeSpecification object that defines the possible values
	// for a categorical hyperparameter.
	CategoricalParameterRangeSpecification *CategoricalParameterRangeSpecification

	// A ContinuousParameterRangeSpecification object that defines the possible values
	// for a continuous hyperparameter.
	ContinuousParameterRangeSpecification *ContinuousParameterRangeSpecification

	// A IntegerParameterRangeSpecification object that defines the possible values for
	// an integer hyperparameter.
	IntegerParameterRangeSpecification *IntegerParameterRangeSpecification
}

Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.

type ParameterRanges

type ParameterRanges struct {

	// The array of CategoricalParameterRange objects that specify ranges of
	// categorical hyperparameters that a hyperparameter tuning job searches.
	CategoricalParameterRanges []*CategoricalParameterRange

	// The array of ContinuousParameterRange objects that specify ranges of continuous
	// hyperparameters that a hyperparameter tuning job searches.
	ContinuousParameterRanges []*ContinuousParameterRange

	// The array of IntegerParameterRange objects that specify ranges of integer
	// hyperparameters that a hyperparameter tuning job searches.
	IntegerParameterRanges []*IntegerParameterRange
}

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job. You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.

type ParameterType

type ParameterType string
const (
	ParameterTypeInteger     ParameterType = "Integer"
	ParameterTypeContinuous  ParameterType = "Continuous"
	ParameterTypeCategorical ParameterType = "Categorical"
	ParameterTypeFree_text   ParameterType = "FreeText"
)

Enum values for ParameterType

type Parent

type Parent struct {

	// The name of the experiment.
	ExperimentName *string

	// The name of the trial.
	TrialName *string
}

The trial that a trial component is associated with and the experiment the trial is part of. A component might not be associated with a trial. A component can be associated with multiple trials.

type ParentHyperParameterTuningJob

type ParentHyperParameterTuningJob struct {

	// The name of the hyperparameter tuning job to be used as a starting point for a
	// new hyperparameter tuning job.
	HyperParameterTuningJobName *string
}

A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.

type ProblemType

type ProblemType string
const (
	ProblemTypeBinary_classification     ProblemType = "BinaryClassification"
	ProblemTypeMulticlass_classification ProblemType = "MulticlassClassification"
	ProblemTypeRegression                ProblemType = "Regression"
)

Enum values for ProblemType

type ProcessingClusterConfig

type ProcessingClusterConfig struct {

	// The number of ML compute instances to use in the processing job. For distributed
	// processing jobs, specify a value greater than 1. The default value is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume in gigabytes that you want to provision. You
	// must specify sufficient ML storage for your scenario.
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt data on the storage volume attached to the ML compute instance(s) that
	// run the processing job.
	VolumeKmsKeyId *string
}

Configuration for the cluster used to run a processing job.

type ProcessingInput

type ProcessingInput struct {

	// The name of the inputs for the processing job.
	//
	// This member is required.
	InputName *string

	// The S3 inputs for the processing job.
	//
	// This member is required.
	S3Input *ProcessingS3Input
}

The inputs for a processing job.

type ProcessingInstanceType

type ProcessingInstanceType string
const (
	ProcessingInstanceTypeMl_t3_medium   ProcessingInstanceType = "ml.t3.medium"
	ProcessingInstanceTypeMl_t3_large    ProcessingInstanceType = "ml.t3.large"
	ProcessingInstanceTypeMl_t3_xlarge   ProcessingInstanceType = "ml.t3.xlarge"
	ProcessingInstanceTypeMl_t3_2xlarge  ProcessingInstanceType = "ml.t3.2xlarge"
	ProcessingInstanceTypeMl_m4_xlarge   ProcessingInstanceType = "ml.m4.xlarge"
	ProcessingInstanceTypeMl_m4_2xlarge  ProcessingInstanceType = "ml.m4.2xlarge"
	ProcessingInstanceTypeMl_m4_4xlarge  ProcessingInstanceType = "ml.m4.4xlarge"
	ProcessingInstanceTypeMl_m4_10xlarge ProcessingInstanceType = "ml.m4.10xlarge"
	ProcessingInstanceTypeMl_m4_16xlarge ProcessingInstanceType = "ml.m4.16xlarge"
	ProcessingInstanceTypeMl_c4_xlarge   ProcessingInstanceType = "ml.c4.xlarge"
	ProcessingInstanceTypeMl_c4_2xlarge  ProcessingInstanceType = "ml.c4.2xlarge"
	ProcessingInstanceTypeMl_c4_4xlarge  ProcessingInstanceType = "ml.c4.4xlarge"
	ProcessingInstanceTypeMl_c4_8xlarge  ProcessingInstanceType = "ml.c4.8xlarge"
	ProcessingInstanceTypeMl_p2_xlarge   ProcessingInstanceType = "ml.p2.xlarge"
	ProcessingInstanceTypeMl_p2_8xlarge  ProcessingInstanceType = "ml.p2.8xlarge"
	ProcessingInstanceTypeMl_p2_16xlarge ProcessingInstanceType = "ml.p2.16xlarge"
	ProcessingInstanceTypeMl_p3_2xlarge  ProcessingInstanceType = "ml.p3.2xlarge"
	ProcessingInstanceTypeMl_p3_8xlarge  ProcessingInstanceType = "ml.p3.8xlarge"
	ProcessingInstanceTypeMl_p3_16xlarge ProcessingInstanceType = "ml.p3.16xlarge"
	ProcessingInstanceTypeMl_c5_xlarge   ProcessingInstanceType = "ml.c5.xlarge"
	ProcessingInstanceTypeMl_c5_2xlarge  ProcessingInstanceType = "ml.c5.2xlarge"
	ProcessingInstanceTypeMl_c5_4xlarge  ProcessingInstanceType = "ml.c5.4xlarge"
	ProcessingInstanceTypeMl_c5_9xlarge  ProcessingInstanceType = "ml.c5.9xlarge"
	ProcessingInstanceTypeMl_c5_18xlarge ProcessingInstanceType = "ml.c5.18xlarge"
	ProcessingInstanceTypeMl_m5_large    ProcessingInstanceType = "ml.m5.large"
	ProcessingInstanceTypeMl_m5_xlarge   ProcessingInstanceType = "ml.m5.xlarge"
	ProcessingInstanceTypeMl_m5_2xlarge  ProcessingInstanceType = "ml.m5.2xlarge"
	ProcessingInstanceTypeMl_m5_4xlarge  ProcessingInstanceType = "ml.m5.4xlarge"
	ProcessingInstanceTypeMl_m5_12xlarge ProcessingInstanceType = "ml.m5.12xlarge"
	ProcessingInstanceTypeMl_m5_24xlarge ProcessingInstanceType = "ml.m5.24xlarge"
	ProcessingInstanceTypeMl_r5_large    ProcessingInstanceType = "ml.r5.large"
	ProcessingInstanceTypeMl_r5_xlarge   ProcessingInstanceType = "ml.r5.xlarge"
	ProcessingInstanceTypeMl_r5_2xlarge  ProcessingInstanceType = "ml.r5.2xlarge"
	ProcessingInstanceTypeMl_r5_4xlarge  ProcessingInstanceType = "ml.r5.4xlarge"
	ProcessingInstanceTypeMl_r5_8xlarge  ProcessingInstanceType = "ml.r5.8xlarge"
	ProcessingInstanceTypeMl_r5_12xlarge ProcessingInstanceType = "ml.r5.12xlarge"
	ProcessingInstanceTypeMl_r5_16xlarge ProcessingInstanceType = "ml.r5.16xlarge"
	ProcessingInstanceTypeMl_r5_24xlarge ProcessingInstanceType = "ml.r5.24xlarge"
)

Enum values for ProcessingInstanceType

type ProcessingJob

type ProcessingJob struct {

	// Configuration to run a processing job in a specified container image.
	AppSpecification *AppSpecification

	// The Amazon Resource Name (ARN) of the AutoML job associated with this processing
	// job.
	AutoMLJobArn *string

	// The time the processing job was created.
	CreationTime *time.Time

	// Sets the environment variables in the Docker container.
	Environment map[string]*string

	// A string, up to one KB in size, that contains metadata from the processing
	// container when the processing job exits.
	ExitMessage *string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//
	//     * CreateProcessingJob
	//
	//     *
	// CreateTrainingJob
	//
	//     * CreateTransformJob
	ExperimentConfig *ExperimentConfig

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// The time the processing job was last modified.
	LastModifiedTime *time.Time

	// The ARN of a monitoring schedule for an endpoint associated with this processing
	// job.
	MonitoringScheduleArn *string

	// Networking options for a job, such as network traffic encryption between
	// containers, whether to allow inbound and outbound network calls to and from
	// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
	NetworkConfig *NetworkConfig

	// The time that the processing job ended.
	ProcessingEndTime *time.Time

	// For each input, data is downloaded from S3 into the processing container before
	// the processing job begins running if "S3InputMode" is set to File.
	ProcessingInputs []*ProcessingInput

	// The ARN of the processing job.
	ProcessingJobArn *string

	// The name of the processing job.
	ProcessingJobName *string

	// The status of the processing job.
	ProcessingJobStatus ProcessingJobStatus

	// The output configuration for the processing job.
	ProcessingOutputConfig *ProcessingOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to deploy
	// for a processing job. In distributed training, you specify more than one
	// instance.
	ProcessingResources *ProcessingResources

	// The time that the processing job started.
	ProcessingStartTime *time.Time

	// The ARN of the role used to create the processing job.
	RoleArn *string

	// Specifies a time limit for how long the processing job is allowed to run.
	StoppingCondition *ProcessingStoppingCondition

	// An array of key-value pairs. For more information, see Using Cost Allocation
	// Tags
	// (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
	// in the AWS Billing and Cost Management User Guide.
	Tags []*Tag

	// The ARN of the training job associated with this processing job.
	TrainingJobArn *string
}

An Amazon SageMaker processing job that is used to analyze data and evaluate models. For more information, see Process Data and Evaluate Models (https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html).

type ProcessingJobStatus

type ProcessingJobStatus string
const (
	ProcessingJobStatusIn_progress ProcessingJobStatus = "InProgress"
	ProcessingJobStatusCompleted   ProcessingJobStatus = "Completed"
	ProcessingJobStatusFailed      ProcessingJobStatus = "Failed"
	ProcessingJobStatusStopping    ProcessingJobStatus = "Stopping"
	ProcessingJobStatusStopped     ProcessingJobStatus = "Stopped"
)

Enum values for ProcessingJobStatus

type ProcessingJobSummary

type ProcessingJobSummary struct {

	// The time at which the processing job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the processing job..
	//
	// This member is required.
	ProcessingJobArn *string

	// The name of the processing job.
	//
	// This member is required.
	ProcessingJobName *string

	// The status of the processing job.
	//
	// This member is required.
	ProcessingJobStatus ProcessingJobStatus

	// An optional string, up to one KB in size, that contains metadata from the
	// processing container when the processing job exits.
	ExitMessage *string

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// A timestamp that indicates the last time the processing job was modified.
	LastModifiedTime *time.Time

	// The time at which the processing job completed.
	ProcessingEndTime *time.Time
}

Summary of information about a processing job.

type ProcessingOutput

type ProcessingOutput struct {

	// The name for the processing job output.
	//
	// This member is required.
	OutputName *string

	// Configuration for processing job outputs in Amazon S3.
	//
	// This member is required.
	S3Output *ProcessingS3Output
}

Describes the results of a processing job.

type ProcessingOutputConfig

type ProcessingOutputConfig struct {

	// Output configuration information for a processing job.
	//
	// This member is required.
	Outputs []*ProcessingOutput

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a
	// KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to
	// all outputs.
	KmsKeyId *string
}

The output configuration for the processing job.

type ProcessingResources

type ProcessingResources struct {

	// The configuration for the resources in a cluster used to run the processing job.
	//
	// This member is required.
	ClusterConfig *ProcessingClusterConfig
}

Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.

type ProcessingS3CompressionType

type ProcessingS3CompressionType string
const (
	ProcessingS3CompressionTypeNone ProcessingS3CompressionType = "None"
	ProcessingS3CompressionTypeGzip ProcessingS3CompressionType = "Gzip"
)

Enum values for ProcessingS3CompressionType

type ProcessingS3DataDistributionType

type ProcessingS3DataDistributionType string
const (
	ProcessingS3DataDistributionTypeFullyreplicated ProcessingS3DataDistributionType = "FullyReplicated"
	ProcessingS3DataDistributionTypeShardedbys3key  ProcessingS3DataDistributionType = "ShardedByS3Key"
)

Enum values for ProcessingS3DataDistributionType

type ProcessingS3DataType

type ProcessingS3DataType string
const (
	ProcessingS3DataTypeManifest_file ProcessingS3DataType = "ManifestFile"
	ProcessingS3DataTypeS3_prefix     ProcessingS3DataType = "S3Prefix"
)

Enum values for ProcessingS3DataType

type ProcessingS3Input

type ProcessingS3Input struct {

	// The local path to the Amazon S3 bucket where you want Amazon SageMaker to
	// download the inputs to run a processing job. LocalPath is an absolute path to
	// the input data.
	//
	// This member is required.
	LocalPath *string

	// Whether you use an S3Prefix or a ManifestFile for the data type. If you choose
	// S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects
	// with the specified key name prefix for the processing job. If you choose
	// ManifestFile, S3Uri identifies an object that is a manifest file containing a
	// list of object keys that you want Amazon SageMaker to use for the processing
	// job.
	//
	// This member is required.
	S3DataType ProcessingS3DataType

	// Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies
	// the data from the input source onto the local Amazon Elastic Block Store (Amazon
	// EBS) volumes before starting your training algorithm. This is the most commonly
	// used input mode. In Pipe mode, Amazon SageMaker streams input data from the
	// source directly to your algorithm without using the EBS volume.
	//
	// This member is required.
	S3InputMode ProcessingS3InputMode

	// The URI for the Amazon S3 storage where you want Amazon SageMaker to download
	// the artifacts needed to run a processing job.
	//
	// This member is required.
	S3Uri *string

	// Whether to use Gzip compression for Amazon S3 storage.
	S3CompressionType ProcessingS3CompressionType

	// Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key.
	S3DataDistributionType ProcessingS3DataDistributionType
}

Information about where and how you want to obtain the inputs for an processing job.

type ProcessingS3InputMode

type ProcessingS3InputMode string
const (
	ProcessingS3InputModePipe ProcessingS3InputMode = "Pipe"
	ProcessingS3InputModeFile ProcessingS3InputMode = "File"
)

Enum values for ProcessingS3InputMode

type ProcessingS3Output

type ProcessingS3Output struct {

	// The local path to the Amazon S3 bucket where you want Amazon SageMaker to save
	// the results of an processing job. LocalPath is an absolute path to the input
	// data.
	//
	// This member is required.
	LocalPath *string

	// Whether to upload the results of the processing job continuously or after the
	// job completes.
	//
	// This member is required.
	S3UploadMode ProcessingS3UploadMode

	// A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to
	// save the results of a processing job.
	//
	// This member is required.
	S3Uri *string
}

Information about where and how you want to store the results of an processing job.

type ProcessingS3UploadMode

type ProcessingS3UploadMode string
const (
	ProcessingS3UploadModeContinuous ProcessingS3UploadMode = "Continuous"
	ProcessingS3UploadModeEnd_of_job ProcessingS3UploadMode = "EndOfJob"
)

Enum values for ProcessingS3UploadMode

type ProcessingStoppingCondition

type ProcessingStoppingCondition struct {

	// Specifies the maximum runtime in seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32
}

Specifies a time limit for how long the processing job is allowed to run.

type ProductionVariant

type ProductionVariant struct {

	// Number of instances to launch initially.
	//
	// This member is required.
	InitialInstanceCount *int32

	// The ML compute instance type.
	//
	// This member is required.
	InstanceType ProductionVariantInstanceType

	// The name of the model that you want to host. This is the name that you specified
	// when creating the model.
	//
	// This member is required.
	ModelName *string

	// The name of the production variant.
	//
	// This member is required.
	VariantName *string

	// The size of the Elastic Inference (EI) instance to use for the production
	// variant. EI instances provide on-demand GPU computing for inference. For more
	// information, see Using Elastic Inference in Amazon SageMaker
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html).
	AcceleratorType ProductionVariantAcceleratorType

	// Determines initial traffic distribution among all of the models that you specify
	// in the endpoint configuration. The traffic to a production variant is determined
	// by the ratio of the VariantWeight to the sum of all VariantWeight values across
	// all ProductionVariants. If unspecified, it defaults to 1.0.
	InitialVariantWeight *float32
}

Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.

type ProductionVariantAcceleratorType

type ProductionVariantAcceleratorType string
const (
	ProductionVariantAcceleratorTypeMl_eia1_medium ProductionVariantAcceleratorType = "ml.eia1.medium"
	ProductionVariantAcceleratorTypeMl_eia1_large  ProductionVariantAcceleratorType = "ml.eia1.large"
	ProductionVariantAcceleratorTypeMl_eia1_xlarge ProductionVariantAcceleratorType = "ml.eia1.xlarge"
	ProductionVariantAcceleratorTypeMl_eia2_medium ProductionVariantAcceleratorType = "ml.eia2.medium"
	ProductionVariantAcceleratorTypeMl_eia2_large  ProductionVariantAcceleratorType = "ml.eia2.large"
	ProductionVariantAcceleratorTypeMl_eia2_xlarge ProductionVariantAcceleratorType = "ml.eia2.xlarge"
)

Enum values for ProductionVariantAcceleratorType

type ProductionVariantInstanceType

type ProductionVariantInstanceType string
const (
	ProductionVariantInstanceTypeMl_t2_medium     ProductionVariantInstanceType = "ml.t2.medium"
	ProductionVariantInstanceTypeMl_t2_large      ProductionVariantInstanceType = "ml.t2.large"
	ProductionVariantInstanceTypeMl_t2_xlarge     ProductionVariantInstanceType = "ml.t2.xlarge"
	ProductionVariantInstanceTypeMl_t2_2xlarge    ProductionVariantInstanceType = "ml.t2.2xlarge"
	ProductionVariantInstanceTypeMl_m4_xlarge     ProductionVariantInstanceType = "ml.m4.xlarge"
	ProductionVariantInstanceTypeMl_m4_2xlarge    ProductionVariantInstanceType = "ml.m4.2xlarge"
	ProductionVariantInstanceTypeMl_m4_4xlarge    ProductionVariantInstanceType = "ml.m4.4xlarge"
	ProductionVariantInstanceTypeMl_m4_10xlarge   ProductionVariantInstanceType = "ml.m4.10xlarge"
	ProductionVariantInstanceTypeMl_m4_16xlarge   ProductionVariantInstanceType = "ml.m4.16xlarge"
	ProductionVariantInstanceTypeMl_m5_large      ProductionVariantInstanceType = "ml.m5.large"
	ProductionVariantInstanceTypeMl_m5_xlarge     ProductionVariantInstanceType = "ml.m5.xlarge"
	ProductionVariantInstanceTypeMl_m5_2xlarge    ProductionVariantInstanceType = "ml.m5.2xlarge"
	ProductionVariantInstanceTypeMl_m5_4xlarge    ProductionVariantInstanceType = "ml.m5.4xlarge"
	ProductionVariantInstanceTypeMl_m5_12xlarge   ProductionVariantInstanceType = "ml.m5.12xlarge"
	ProductionVariantInstanceTypeMl_m5_24xlarge   ProductionVariantInstanceType = "ml.m5.24xlarge"
	ProductionVariantInstanceTypeMl_m5d_large     ProductionVariantInstanceType = "ml.m5d.large"
	ProductionVariantInstanceTypeMl_m5d_xlarge    ProductionVariantInstanceType = "ml.m5d.xlarge"
	ProductionVariantInstanceTypeMl_m5d_2xlarge   ProductionVariantInstanceType = "ml.m5d.2xlarge"
	ProductionVariantInstanceTypeMl_m5d_4xlarge   ProductionVariantInstanceType = "ml.m5d.4xlarge"
	ProductionVariantInstanceTypeMl_m5d_12xlarge  ProductionVariantInstanceType = "ml.m5d.12xlarge"
	ProductionVariantInstanceTypeMl_m5d_24xlarge  ProductionVariantInstanceType = "ml.m5d.24xlarge"
	ProductionVariantInstanceTypeMl_c4_large      ProductionVariantInstanceType = "ml.c4.large"
	ProductionVariantInstanceTypeMl_c4_xlarge     ProductionVariantInstanceType = "ml.c4.xlarge"
	ProductionVariantInstanceTypeMl_c4_2xlarge    ProductionVariantInstanceType = "ml.c4.2xlarge"
	ProductionVariantInstanceTypeMl_c4_4xlarge    ProductionVariantInstanceType = "ml.c4.4xlarge"
	ProductionVariantInstanceTypeMl_c4_8xlarge    ProductionVariantInstanceType = "ml.c4.8xlarge"
	ProductionVariantInstanceTypeMl_p2_xlarge     ProductionVariantInstanceType = "ml.p2.xlarge"
	ProductionVariantInstanceTypeMl_p2_8xlarge    ProductionVariantInstanceType = "ml.p2.8xlarge"
	ProductionVariantInstanceTypeMl_p2_16xlarge   ProductionVariantInstanceType = "ml.p2.16xlarge"
	ProductionVariantInstanceTypeMl_p3_2xlarge    ProductionVariantInstanceType = "ml.p3.2xlarge"
	ProductionVariantInstanceTypeMl_p3_8xlarge    ProductionVariantInstanceType = "ml.p3.8xlarge"
	ProductionVariantInstanceTypeMl_p3_16xlarge   ProductionVariantInstanceType = "ml.p3.16xlarge"
	ProductionVariantInstanceTypeMl_c5_large      ProductionVariantInstanceType = "ml.c5.large"
	ProductionVariantInstanceTypeMl_c5_xlarge     ProductionVariantInstanceType = "ml.c5.xlarge"
	ProductionVariantInstanceTypeMl_c5_2xlarge    ProductionVariantInstanceType = "ml.c5.2xlarge"
	ProductionVariantInstanceTypeMl_c5_4xlarge    ProductionVariantInstanceType = "ml.c5.4xlarge"
	ProductionVariantInstanceTypeMl_c5_9xlarge    ProductionVariantInstanceType = "ml.c5.9xlarge"
	ProductionVariantInstanceTypeMl_c5_18xlarge   ProductionVariantInstanceType = "ml.c5.18xlarge"
	ProductionVariantInstanceTypeMl_c5d_large     ProductionVariantInstanceType = "ml.c5d.large"
	ProductionVariantInstanceTypeMl_c5d_xlarge    ProductionVariantInstanceType = "ml.c5d.xlarge"
	ProductionVariantInstanceTypeMl_c5d_2xlarge   ProductionVariantInstanceType = "ml.c5d.2xlarge"
	ProductionVariantInstanceTypeMl_c5d_4xlarge   ProductionVariantInstanceType = "ml.c5d.4xlarge"
	ProductionVariantInstanceTypeMl_c5d_9xlarge   ProductionVariantInstanceType = "ml.c5d.9xlarge"
	ProductionVariantInstanceTypeMl_c5d_18xlarge  ProductionVariantInstanceType = "ml.c5d.18xlarge"
	ProductionVariantInstanceTypeMl_g4dn_xlarge   ProductionVariantInstanceType = "ml.g4dn.xlarge"
	ProductionVariantInstanceTypeMl_g4dn_2xlarge  ProductionVariantInstanceType = "ml.g4dn.2xlarge"
	ProductionVariantInstanceTypeMl_g4dn_4xlarge  ProductionVariantInstanceType = "ml.g4dn.4xlarge"
	ProductionVariantInstanceTypeMl_g4dn_8xlarge  ProductionVariantInstanceType = "ml.g4dn.8xlarge"
	ProductionVariantInstanceTypeMl_g4dn_12xlarge ProductionVariantInstanceType = "ml.g4dn.12xlarge"
	ProductionVariantInstanceTypeMl_g4dn_16xlarge ProductionVariantInstanceType = "ml.g4dn.16xlarge"
	ProductionVariantInstanceTypeMl_r5_large      ProductionVariantInstanceType = "ml.r5.large"
	ProductionVariantInstanceTypeMl_r5_xlarge     ProductionVariantInstanceType = "ml.r5.xlarge"
	ProductionVariantInstanceTypeMl_r5_2xlarge    ProductionVariantInstanceType = "ml.r5.2xlarge"
	ProductionVariantInstanceTypeMl_r5_4xlarge    ProductionVariantInstanceType = "ml.r5.4xlarge"
	ProductionVariantInstanceTypeMl_r5_12xlarge   ProductionVariantInstanceType = "ml.r5.12xlarge"
	ProductionVariantInstanceTypeMl_r5_24xlarge   ProductionVariantInstanceType = "ml.r5.24xlarge"
	ProductionVariantInstanceTypeMl_r5d_large     ProductionVariantInstanceType = "ml.r5d.large"
	ProductionVariantInstanceTypeMl_r5d_xlarge    ProductionVariantInstanceType = "ml.r5d.xlarge"
	ProductionVariantInstanceTypeMl_r5d_2xlarge   ProductionVariantInstanceType = "ml.r5d.2xlarge"
	ProductionVariantInstanceTypeMl_r5d_4xlarge   ProductionVariantInstanceType = "ml.r5d.4xlarge"
	ProductionVariantInstanceTypeMl_r5d_12xlarge  ProductionVariantInstanceType = "ml.r5d.12xlarge"
	ProductionVariantInstanceTypeMl_r5d_24xlarge  ProductionVariantInstanceType = "ml.r5d.24xlarge"
	ProductionVariantInstanceTypeMl_inf1_xlarge   ProductionVariantInstanceType = "ml.inf1.xlarge"
	ProductionVariantInstanceTypeMl_inf1_2xlarge  ProductionVariantInstanceType = "ml.inf1.2xlarge"
	ProductionVariantInstanceTypeMl_inf1_6xlarge  ProductionVariantInstanceType = "ml.inf1.6xlarge"
	ProductionVariantInstanceTypeMl_inf1_24xlarge ProductionVariantInstanceType = "ml.inf1.24xlarge"
)

Enum values for ProductionVariantInstanceType

type ProductionVariantSummary

type ProductionVariantSummary struct {

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	// The number of instances associated with the variant.
	CurrentInstanceCount *int32

	// The weight associated with the variant.
	CurrentWeight *float32

	// An array of DeployedImage objects that specify the Amazon EC2 Container Registry
	// paths of the inference images deployed on instances of this ProductionVariant.
	DeployedImages []*DeployedImage

	// The number of instances requested in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredInstanceCount *int32

	// The requested weight, as specified in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredWeight *float32
}

Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating, you get different desired and current values.

type PropertyNameQuery

type PropertyNameQuery struct {

	// Text that begins a property's name.
	//
	// This member is required.
	PropertyNameHint *string
}

Part of the SuggestionQuery type. Specifies a hint for retrieving property names that begin with the specified text.

type PropertyNameSuggestion

type PropertyNameSuggestion struct {

	// A suggested property name based on what you entered in the search textbox in the
	// Amazon SageMaker console.
	PropertyName *string
}

A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.

type PublicWorkforceTaskPrice

type PublicWorkforceTaskPrice struct {

	// Defines the amount of money paid to an Amazon Mechanical Turk worker in United
	// States dollars.
	AmountInUsd *USD
}

Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed. Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.

0.048

0.480

1.200

Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.

0.024

0.240

0.960

Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.

1.080

Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.

* 2.400

1.680

0.960

0.240

0.024

Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.

0.600

0.060

Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.

0.720

0.072

type RecordWrapper

type RecordWrapper string
const (
	RecordWrapperNone     RecordWrapper = "None"
	RecordWrapperRecordio RecordWrapper = "RecordIO"
)

Enum values for RecordWrapper

type RenderableTask

type RenderableTask struct {

	// A JSON object that contains values for the variables defined in the template. It
	// is made available to the template under the substitution variable task.input.
	// For example, if you define a variable task.input.text in your template, you can
	// supply the variable in the JSON object as "text": "sample text".
	//
	// This member is required.
	Input *string
}

Contains input values for a task.

type RenderingError

type RenderingError struct {

	// A unique identifier for a specific class of errors.
	//
	// This member is required.
	Code *string

	// A human-readable message describing the error.
	//
	// This member is required.
	Message *string
}

A description of an error that occurred while rendering the template.

type ResolvedAttributes

type ResolvedAttributes struct {

	// Applies a metric to minimize or maximize for the job's objective.
	AutoMLJobObjective *AutoMLJobObjective

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The problem type.
	ProblemType ProblemType
}

The resolved attributes.

type ResourceConfig

type ResourceConfig struct {

	// The number of ML compute instances to use. For distributed training, provide a
	// value greater than 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type.
	//
	// This member is required.
	InstanceType TrainingInstanceType

	// The size of the ML storage volume that you want to provision. ML storage volumes
	// store model artifacts and incremental states. Training algorithms might also use
	// the ML storage volume for scratch space. If you want to store the training data
	// in the ML storage volume, choose File as the TrainingInputMode in the algorithm
	// specification. You must specify sufficient ML storage for your scenario. Amazon
	// SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
	// Certain Nitro-based instances include local storage with a fixed total size,
	// dependent on the instance type. When using these instances for training, Amazon
	// SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage.
	// You can't request a VolumeSizeInGB greater than the total size of the local
	// instance storage. For a list of instance types that support local instance
	// storage, including the total size per instance type, see Instance Store Volumes
	// (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes).
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume
	// attached to the ML compute instance(s) that run the training job. Certain
	// Nitro-based instances include local storage, dependent on the instance type.
	// Local storage volumes are encrypted using a hardware module on the instance. You
	// can't request a VolumeKmsKeyId when using an instance type with local storage.
	// For a list of instance types that support local instance storage, see Instance
	// Store Volumes
	// (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes).
	// For more information about local instance storage encryption, see SSD Instance
	// Store Volumes
	// (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html).
	// The VolumeKmsKeyId can be in any of the following formats:
	//
	//     * // KMS Key ID
	// "1234abcd-12ab-34cd-56ef-1234567890ab"
	//
	//     * // Amazon Resource Name (ARN) of a
	// KMS Key
	// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string
}

Describes the resources, including ML compute instances and ML storage volumes, to use for model training.

type ResourceInUse

type ResourceInUse struct {
	Message *string
}

Resource being accessed is in use.

func (*ResourceInUse) Error

func (e *ResourceInUse) Error() string

func (*ResourceInUse) ErrorCode

func (e *ResourceInUse) ErrorCode() string

func (*ResourceInUse) ErrorFault

func (e *ResourceInUse) ErrorFault() smithy.ErrorFault

func (*ResourceInUse) ErrorMessage

func (e *ResourceInUse) ErrorMessage() string

type ResourceLimitExceeded

type ResourceLimitExceeded struct {
	Message *string
}

You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created.

func (*ResourceLimitExceeded) Error

func (e *ResourceLimitExceeded) Error() string

func (*ResourceLimitExceeded) ErrorCode

func (e *ResourceLimitExceeded) ErrorCode() string

func (*ResourceLimitExceeded) ErrorFault

func (e *ResourceLimitExceeded) ErrorFault() smithy.ErrorFault

func (*ResourceLimitExceeded) ErrorMessage

func (e *ResourceLimitExceeded) ErrorMessage() string

type ResourceLimits

type ResourceLimits struct {

	// The maximum number of training jobs that a hyperparameter tuning job can launch.
	//
	// This member is required.
	MaxNumberOfTrainingJobs *int32

	// The maximum number of concurrent training jobs that a hyperparameter tuning job
	// can launch.
	//
	// This member is required.
	MaxParallelTrainingJobs *int32
}

Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.

type ResourceNotFound

type ResourceNotFound struct {
	Message *string
}

Resource being access is not found.

func (*ResourceNotFound) Error

func (e *ResourceNotFound) Error() string

func (*ResourceNotFound) ErrorCode

func (e *ResourceNotFound) ErrorCode() string

func (*ResourceNotFound) ErrorFault

func (e *ResourceNotFound) ErrorFault() smithy.ErrorFault

func (*ResourceNotFound) ErrorMessage

func (e *ResourceNotFound) ErrorMessage() string

type ResourceSpec

type ResourceSpec struct {

	// The instance type.
	InstanceType AppInstanceType

	// The Amazon Resource Name (ARN) of the SageMaker image created on the instance.
	SageMakerImageArn *string
}

The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The ARN is stored as metadata in SageMaker Studio notebooks.

type ResourceType

type ResourceType string
const (
	ResourceTypeTraining_job               ResourceType = "TrainingJob"
	ResourceTypeExperiment                 ResourceType = "Experiment"
	ResourceTypeExperiment_trial           ResourceType = "ExperimentTrial"
	ResourceTypeExperiment_trial_component ResourceType = "ExperimentTrialComponent"
)

Enum values for ResourceType

type RetentionPolicy

type RetentionPolicy struct {

	// The default is Retain, which specifies to keep the data stored on the EFS
	// volume. Specify Delete to delete the data stored on the EFS volume.
	HomeEfsFileSystem RetentionType
}

The retention policy for data stored on an Amazon Elastic File System (EFS) volume.

type RetentionType

type RetentionType string
const (
	RetentionTypeRetain RetentionType = "Retain"
	RetentionTypeDelete RetentionType = "Delete"
)

Enum values for RetentionType

type RootAccess

type RootAccess string
const (
	RootAccessEnabled  RootAccess = "Enabled"
	RootAccessDisabled RootAccess = "Disabled"
)

Enum values for RootAccess

type RuleEvaluationStatus

type RuleEvaluationStatus string
const (
	RuleEvaluationStatusIn_progress     RuleEvaluationStatus = "InProgress"
	RuleEvaluationStatusNo_issues_found RuleEvaluationStatus = "NoIssuesFound"
	RuleEvaluationStatusIssues_found    RuleEvaluationStatus = "IssuesFound"
	RuleEvaluationStatusError           RuleEvaluationStatus = "Error"
	RuleEvaluationStatusStopping        RuleEvaluationStatus = "Stopping"
	RuleEvaluationStatusStopped         RuleEvaluationStatus = "Stopped"
)

Enum values for RuleEvaluationStatus

type S3DataDistribution

type S3DataDistribution string
const (
	S3DataDistributionFully_replicated  S3DataDistribution = "FullyReplicated"
	S3DataDistributionSharded_by_s3_key S3DataDistribution = "ShardedByS3Key"
)

Enum values for S3DataDistribution

type S3DataSource

type S3DataSource struct {

	// If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker
	// uses all objects that match the specified key name prefix for model training. If
	// you choose ManifestFile, S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want Amazon SageMaker to use for model
	// training. If you choose AugmentedManifestFile, S3Uri identifies an object that
	// is an augmented manifest file in JSON lines format. This file contains the data
	// you want to use for model training. AugmentedManifestFile can only be used if
	// the Channel's input mode is Pipe.
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType, identifies either a key
	// name prefix or a manifest. For example:
	//
	//     * A key name prefix might look like
	// this: s3://bucketname/exampleprefix
	//
	//     * A manifest might look like this:
	// s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file
	// consisting of an array of elements. The first element is a prefix which is
	// followed by one or more suffixes. SageMaker appends the suffix elements to the
	// prefix to get a full set of S3Uri. Note that the prefix must be a valid
	// non-empty S3Uri that precludes users from specifying a manifest whose individual
	// S3Uri is sourced from different S3 buckets. The following code example shows a
	// valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"},
	// "relative/path/to/custdata-1", "relative/path/custdata-2", ...
	// "relative/path/custdata-N"] This JSON is equivalent to the following S3Uri list:
	// s3://customer_bucket/some/prefix/relative/path/to/custdata-1s3://customer_bucket/some/prefix/relative/path/custdata-2...s3://customer_bucket/some/prefix/relative/path/custdata-N
	// The complete set of S3Uri in this manifest is the input data for the channel for
	// this data source. The object that each S3Uri points to must be readable by the
	// IAM role that Amazon SageMaker uses to perform tasks on your behalf.
	//
	// This member is required.
	S3Uri *string

	// A list of one or more attribute names to use that are found in a specified
	// augmented manifest file.
	AttributeNames []*string

	// If you want Amazon SageMaker to replicate the entire dataset on each ML compute
	// instance that is launched for model training, specify FullyReplicated. If you
	// want Amazon SageMaker to replicate a subset of data on each ML compute instance
	// that is launched for model training, specify ShardedByS3Key. If there are n ML
	// compute instances launched for a training job, each instance gets approximately
	// 1/n of the number of S3 objects. In this case, model training on each machine
	// uses only the subset of training data. Don't choose more ML compute instances
	// for training than available S3 objects. If you do, some nodes won't get any data
	// and you will pay for nodes that aren't getting any training data. This applies
	// in both File and Pipe modes. Keep this in mind when developing algorithms. In
	// distributed training, where you use multiple ML compute EC2 instances, you might
	// choose ShardedByS3Key. If the algorithm requires copying training data to the ML
	// storage volume (when TrainingInputMode is set to File), this copies 1/n of the
	// number of objects.
	S3DataDistributionType S3DataDistribution
}

Describes the S3 data source.

type S3DataType

type S3DataType string
const (
	S3DataTypeManifest_file           S3DataType = "ManifestFile"
	S3DataTypeS3_prefix               S3DataType = "S3Prefix"
	S3DataTypeAugmented_manifest_file S3DataType = "AugmentedManifestFile"
)

Enum values for S3DataType

type ScheduleConfig

type ScheduleConfig struct {

	// A cron expression that describes details about the monitoring schedule.
	// Currently the only supported cron expressions are:
	//
	//     * If you want to set the
	// job to start every hour, please use the following: Hourly: cron(0 * ? * * *)
	//
	//
	// * If you want to start the job daily: cron(0 [00-23] ? * * *)
	//
	// For example, the
	// following are valid cron expressions:
	//
	//     * Daily at noon UTC: cron(0 12 ? * *
	// *)
	//
	//     * Daily at midnight UTC: cron(0 0 ? * * *)
	//
	// To support running every 6,
	// 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? * * *) For
	// example, the following are valid cron expressions:
	//
	//     * Every 12 hours,
	// starting at 5pm UTC: cron(0 17/12 ? * * *)
	//
	//     * Every two hours starting at
	// midnight: cron(0 0/2 ? * * *)
	//
	//     * Even though the cron expression is set to
	// start at 5PM UTC, note that there could be a delay of 0-20 minutes from the
	// actual requested time to run the execution.
	//
	//     * We recommend that if you
	// would like a daily schedule, you do not provide this parameter. Amazon SageMaker
	// will pick a time for running every day.
	//
	// This member is required.
	ScheduleExpression *string
}

Configuration details about the monitoring schedule.

type ScheduleStatus

type ScheduleStatus string
const (
	ScheduleStatusPending   ScheduleStatus = "Pending"
	ScheduleStatusFailed    ScheduleStatus = "Failed"
	ScheduleStatusScheduled ScheduleStatus = "Scheduled"
	ScheduleStatusStopped   ScheduleStatus = "Stopped"
)

Enum values for ScheduleStatus

type SearchExpression

type SearchExpression struct {

	// A list of filter objects.
	Filters []*Filter

	// A list of nested filter objects.
	NestedFilters []*NestedFilters

	// A Boolean operator used to evaluate the search expression. If you want every
	// conditional statement in all lists to be satisfied for the entire search
	// expression to be true, specify And. If only a single conditional statement needs
	// to be true for the entire search expression to be true, specify Or. The default
	// value is And.
	Operator BooleanOperator

	// A list of search expression objects.
	SubExpressions []*SearchExpression
}

A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements. A SearchExpression contains the following components:

objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.

objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.

objects. A search expression object can be nested in a list of search expression objects.

type SearchRecord

type SearchRecord struct {

	// The properties of an experiment.
	Experiment *Experiment

	// The properties of a training job.
	TrainingJob *TrainingJob

	// The properties of a trial.
	Trial *Trial

	// The properties of a trial component.
	TrialComponent *TrialComponent
}

A single resource returned as part of the Search API response.

type SearchSortOrder

type SearchSortOrder string
const (
	SearchSortOrderAscending  SearchSortOrder = "Ascending"
	SearchSortOrderDescending SearchSortOrder = "Descending"
)

Enum values for SearchSortOrder

type SecondaryStatus

type SecondaryStatus string
const (
	SecondaryStatusStarting                   SecondaryStatus = "Starting"
	SecondaryStatusLaunching_ml_instances     SecondaryStatus = "LaunchingMLInstances"
	SecondaryStatusPreparing_training_stack   SecondaryStatus = "PreparingTrainingStack"
	SecondaryStatusDownloading                SecondaryStatus = "Downloading"
	SecondaryStatusDownloading_training_image SecondaryStatus = "DownloadingTrainingImage"
	SecondaryStatusTraining                   SecondaryStatus = "Training"
	SecondaryStatusUploading                  SecondaryStatus = "Uploading"
	SecondaryStatusStopping                   SecondaryStatus = "Stopping"
	SecondaryStatusStopped                    SecondaryStatus = "Stopped"
	SecondaryStatusMax_runtime_exceeded       SecondaryStatus = "MaxRuntimeExceeded"
	SecondaryStatusCompleted                  SecondaryStatus = "Completed"
	SecondaryStatusFailed                     SecondaryStatus = "Failed"
	SecondaryStatusInterrupted                SecondaryStatus = "Interrupted"
	SecondaryStatusMax_wait_time_exceeded     SecondaryStatus = "MaxWaitTimeExceeded"
)

Enum values for SecondaryStatus

type SecondaryStatusTransition

type SecondaryStatusTransition struct {

	// A timestamp that shows when the training job transitioned to the current
	// secondary status state.
	//
	// This member is required.
	StartTime *time.Time

	// Contains a secondary status information from a training job. Status might be one
	// of the following secondary statuses: InProgress
	//
	//     * Starting - Starting the
	// training job.
	//
	//     * Downloading - An optional stage for algorithms that support
	// File training input mode. It indicates that data is being downloaded to the ML
	// storage volumes.
	//
	//     * Training - Training is in progress.
	//
	//     * Uploading -
	// Training is complete and the model artifacts are being uploaded to the S3
	// location.
	//
	// Completed
	//
	//     * Completed - The training job has
	// completed.
	//
	// Failed
	//
	//     * Failed - The training job has failed. The reason for
	// the failure is returned in the FailureReason field of
	// DescribeTrainingJobResponse.
	//
	// Stopped
	//
	//     * MaxRuntimeExceeded - The job
	// stopped because it exceeded the maximum allowed runtime.
	//
	//     * Stopped - The
	// training job has stopped.
	//
	// Stopping
	//
	//     * Stopping - Stopping the training
	// job.
	//
	// We no longer support the following secondary statuses:
	//
	//     *
	// LaunchingMLInstances
	//
	//     * PreparingTrainingStack
	//
	//     *
	// DownloadingTrainingImage
	//
	// This member is required.
	Status SecondaryStatus

	// A timestamp that shows when the training job transitioned out of this secondary
	// status state into another secondary status state or when the training job has
	// ended.
	EndTime *time.Time

	// A detailed description of the progress within a secondary status. Amazon
	// SageMaker provides secondary statuses and status messages that apply to each of
	// them: Starting
	//
	//     * Starting the training job.
	//
	//     * Launching requested ML
	// instances.
	//
	//     * Insufficient capacity error from EC2 while launching
	// instances, retrying!
	//
	//     * Launched instance was unhealthy, replacing it!
	//
	//
	// * Preparing the instances for training.
	//
	// Training
	//
	//     * Downloading the
	// training image.
	//
	//     * Training image download completed. Training in
	// progress.
	//
	// Status messages are subject to change. Therefore, we recommend not
	// including them in code that programmatically initiates actions. For examples,
	// don't use status messages in if statements. To have an overview of your training
	// job's progress, view TrainingJobStatus and SecondaryStatus in
	// DescribeTrainingJob, and StatusMessage together. For example, at the start of a
	// training job, you might see the following:
	//
	//     * TrainingJobStatus -
	// InProgress
	//
	//     * SecondaryStatus - Training
	//
	//     * StatusMessage - Downloading
	// the training image
	StatusMessage *string
}

An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.

type SharingSettings

type SharingSettings struct {

	// Whether to include the notebook cell output when sharing the notebook. The
	// default is Disabled.
	NotebookOutputOption NotebookOutputOption

	// When NotebookOutputOption is Allowed, the AWS Key Management Service (KMS)
	// encryption key ID used to encrypt the notebook cell output in the Amazon S3
	// bucket.
	S3KmsKeyId *string

	// When NotebookOutputOption is Allowed, the Amazon S3 bucket used to save the
	// notebook cell output. If S3OutputPath isn't specified, a default bucket is used.
	S3OutputPath *string
}

Specifies options when sharing an Amazon SageMaker Studio notebook. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called.

type ShuffleConfig

type ShuffleConfig struct {

	// Determines the shuffling order in ShuffleConfig value.
	//
	// This member is required.
	Seed *int64
}

A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, the results of the S3 key prefix matches are shuffled. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, when ShuffleConfig is specified shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.

type SortBy

type SortBy string
const (
	SortByName          SortBy = "Name"
	SortByCreation_time SortBy = "CreationTime"
	SortByStatus        SortBy = "Status"
)

Enum values for SortBy

type SortExperimentsBy

type SortExperimentsBy string
const (
	SortExperimentsByName          SortExperimentsBy = "Name"
	SortExperimentsByCreation_time SortExperimentsBy = "CreationTime"
)

Enum values for SortExperimentsBy

type SortOrder

type SortOrder string
const (
	SortOrderAscending  SortOrder = "Ascending"
	SortOrderDescending SortOrder = "Descending"
)

Enum values for SortOrder

type SortTrialComponentsBy

type SortTrialComponentsBy string
const (
	SortTrialComponentsByName          SortTrialComponentsBy = "Name"
	SortTrialComponentsByCreation_time SortTrialComponentsBy = "CreationTime"
)

Enum values for SortTrialComponentsBy

type SortTrialsBy

type SortTrialsBy string
const (
	SortTrialsByName          SortTrialsBy = "Name"
	SortTrialsByCreation_time SortTrialsBy = "CreationTime"
)

Enum values for SortTrialsBy

type SourceAlgorithm

type SourceAlgorithm struct {

	// The name of an algorithm that was used to create the model package. The
	// algorithm must be either an algorithm resource in your Amazon SageMaker account
	// or an algorithm in AWS Marketplace that you are subscribed to.
	//
	// This member is required.
	AlgorithmName *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive
	// (.tar.gz suffix).
	ModelDataUrl *string
}

Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.

type SourceAlgorithmSpecification

type SourceAlgorithmSpecification struct {

	// A list of the algorithms that were used to create a model package.
	//
	// This member is required.
	SourceAlgorithms []*SourceAlgorithm
}

A list of algorithms that were used to create a model package.

type SourceIpConfig

type SourceIpConfig struct {

	// A list of one to ten Classless Inter-Domain Routing
	// (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html) (CIDR)
	// values. Maximum: Ten CIDR values The following Length Constraints apply to
	// individual CIDR values in the CIDR value list.
	//
	// This member is required.
	Cidrs []*string
}

A list of IP address ranges (CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)). Used to create an allow list of IP addresses for a private workforce. For more information, see .

type SplitType

type SplitType string
const (
	SplitTypeNone     SplitType = "None"
	SplitTypeLine     SplitType = "Line"
	SplitTypeRecordio SplitType = "RecordIO"
	SplitTypeTfrecord SplitType = "TFRecord"
)

Enum values for SplitType

type StoppingCondition

type StoppingCondition struct {

	// The maximum length of time, in seconds, that the training or compilation job can
	// run. If job does not complete during this time, Amazon SageMaker ends the job.
	// If value is not specified, default value is 1 day. The maximum value is 28 days.
	MaxRuntimeInSeconds *int32

	// The maximum length of time, in seconds, how long you are willing to wait for a
	// managed spot training job to complete. It is the amount of time spent waiting
	// for Spot capacity plus the amount of time the training job runs. It must be
	// equal to or greater than MaxRuntimeInSeconds.
	MaxWaitTimeInSeconds *int32
}

Specifies a limit to how long a model training or compilation job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the time limit, Amazon SageMaker ends the training or compilation job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. The training algorithms provided by Amazon SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel. The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.

type SubscribedWorkteam

type SubscribedWorkteam struct {

	// The Amazon Resource Name (ARN) of the vendor that you have subscribed.
	//
	// This member is required.
	WorkteamArn *string

	// Marketplace product listing ID.
	ListingId *string

	// The description of the vendor from the Amazon Marketplace.
	MarketplaceDescription *string

	// The title of the service provided by the vendor in the Amazon Marketplace.
	MarketplaceTitle *string

	// The name of the vendor in the Amazon Marketplace.
	SellerName *string
}

Describes a work team of a vendor that does the a labelling job.

type SuggestionQuery

type SuggestionQuery struct {

	// Defines a property name hint. Only property names that begin with the specified
	// hint are included in the response.
	PropertyNameQuery *PropertyNameQuery
}

Specified in the GetSearchSuggestions request. Limits the property names that are included in the response.

type Tag

type Tag struct {

	// The tag key.
	//
	// This member is required.
	Key *string

	// The tag value.
	//
	// This member is required.
	Value *string
}

Describes a tag.

type TargetDevice

type TargetDevice string
const (
	TargetDeviceLambda        TargetDevice = "lambda"
	TargetDeviceMl_m4         TargetDevice = "ml_m4"
	TargetDeviceMl_m5         TargetDevice = "ml_m5"
	TargetDeviceMl_c4         TargetDevice = "ml_c4"
	TargetDeviceMl_c5         TargetDevice = "ml_c5"
	TargetDeviceMl_p2         TargetDevice = "ml_p2"
	TargetDeviceMl_p3         TargetDevice = "ml_p3"
	TargetDeviceMl_g4dn       TargetDevice = "ml_g4dn"
	TargetDeviceMl_inf1       TargetDevice = "ml_inf1"
	TargetDeviceJetson_tx1    TargetDevice = "jetson_tx1"
	TargetDeviceJetson_tx2    TargetDevice = "jetson_tx2"
	TargetDeviceJetson_nano   TargetDevice = "jetson_nano"
	TargetDeviceJetson_xavier TargetDevice = "jetson_xavier"
	TargetDeviceRasp3b        TargetDevice = "rasp3b"
	TargetDeviceImx8qm        TargetDevice = "imx8qm"
	TargetDeviceDeeplens      TargetDevice = "deeplens"
	TargetDeviceRk3399        TargetDevice = "rk3399"
	TargetDeviceRk3288        TargetDevice = "rk3288"
	TargetDeviceAisage        TargetDevice = "aisage"
	TargetDeviceSbe_c         TargetDevice = "sbe_c"
	TargetDeviceQcs605        TargetDevice = "qcs605"
	TargetDeviceQcs603        TargetDevice = "qcs603"
	TargetDeviceSitara_am57x  TargetDevice = "sitara_am57x"
	TargetDeviceAmba_cv22     TargetDevice = "amba_cv22"
	TargetDeviceX86_win32     TargetDevice = "x86_win32"
	TargetDeviceX86_win64     TargetDevice = "x86_win64"
)

Enum values for TargetDevice

type TargetPlatform

type TargetPlatform struct {

	// Specifies a target platform architecture.
	//
	//     * X86_64: 64-bit version of the
	// x86 instruction set.
	//
	//     * X86: 32-bit version of the x86 instruction set.
	//
	//
	// * ARM64: ARMv8 64-bit CPU.
	//
	//     * ARM_EABIHF: ARMv7 32-bit, Hard Float.
	//
	//     *
	// ARM_EABI: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
	//
	// This member is required.
	Arch TargetPlatformArch

	// Specifies a target platform OS.
	//
	//     * LINUX: Linux-based operating systems.
	//
	//
	// * ANDROID: Android operating systems. Android API level can be specified using
	// the ANDROID_PLATFORM compiler option. For example, "CompilerOptions":
	// {'ANDROID_PLATFORM': 28}
	//
	// This member is required.
	Os TargetPlatformOs

	// Specifies a target platform accelerator (optional).
	//
	//     * NVIDIA: Nvidia
	// graphics processing unit. It also requires gpu-code, trt-ver, cuda-ver compiler
	// options
	//
	//     * MALI: ARM Mali graphics processor
	//
	//     * INTEL_GRAPHICS:
	// Integrated Intel graphics
	Accelerator TargetPlatformAccelerator
}

Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

type TargetPlatformAccelerator

type TargetPlatformAccelerator string
const (
	TargetPlatformAcceleratorIntel_graphics TargetPlatformAccelerator = "INTEL_GRAPHICS"
	TargetPlatformAcceleratorMali           TargetPlatformAccelerator = "MALI"
	TargetPlatformAcceleratorNvidia         TargetPlatformAccelerator = "NVIDIA"
)

Enum values for TargetPlatformAccelerator

type TargetPlatformArch

type TargetPlatformArch string
const (
	TargetPlatformArchX86_64     TargetPlatformArch = "X86_64"
	TargetPlatformArchX86        TargetPlatformArch = "X86"
	TargetPlatformArchArm64      TargetPlatformArch = "ARM64"
	TargetPlatformArchArm_eabi   TargetPlatformArch = "ARM_EABI"
	TargetPlatformArchArm_eabihf TargetPlatformArch = "ARM_EABIHF"
)

Enum values for TargetPlatformArch

type TargetPlatformOs

type TargetPlatformOs string
const (
	TargetPlatformOsAndroid TargetPlatformOs = "ANDROID"
	TargetPlatformOsLinux   TargetPlatformOs = "LINUX"
)

Enum values for TargetPlatformOs

type TensorBoardAppSettings

type TensorBoardAppSettings struct {

	// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
	// image created on the instance.
	DefaultResourceSpec *ResourceSpec
}

The TensorBoard app settings.

type TensorBoardOutputConfig

type TensorBoardOutputConfig struct {

	// Path to Amazon S3 storage location for TensorBoard output.
	//
	// This member is required.
	S3OutputPath *string

	// Path to local storage location for tensorBoard output. Defaults to
	// /opt/ml/output/tensorboard.
	LocalPath *string
}

Configuration of storage locations for TensorBoard output.

type TrainingInputMode

type TrainingInputMode string
const (
	TrainingInputModePipe TrainingInputMode = "Pipe"
	TrainingInputModeFile TrainingInputMode = "File"
)

Enum values for TrainingInputMode

type TrainingInstanceType

type TrainingInstanceType string
const (
	TrainingInstanceTypeMl_m4_xlarge     TrainingInstanceType = "ml.m4.xlarge"
	TrainingInstanceTypeMl_m4_2xlarge    TrainingInstanceType = "ml.m4.2xlarge"
	TrainingInstanceTypeMl_m4_4xlarge    TrainingInstanceType = "ml.m4.4xlarge"
	TrainingInstanceTypeMl_m4_10xlarge   TrainingInstanceType = "ml.m4.10xlarge"
	TrainingInstanceTypeMl_m4_16xlarge   TrainingInstanceType = "ml.m4.16xlarge"
	TrainingInstanceTypeMl_g4dn_xlarge   TrainingInstanceType = "ml.g4dn.xlarge"
	TrainingInstanceTypeMl_g4dn_2xlarge  TrainingInstanceType = "ml.g4dn.2xlarge"
	TrainingInstanceTypeMl_g4dn_4xlarge  TrainingInstanceType = "ml.g4dn.4xlarge"
	TrainingInstanceTypeMl_g4dn_8xlarge  TrainingInstanceType = "ml.g4dn.8xlarge"
	TrainingInstanceTypeMl_g4dn_12xlarge TrainingInstanceType = "ml.g4dn.12xlarge"
	TrainingInstanceTypeMl_g4dn_16xlarge TrainingInstanceType = "ml.g4dn.16xlarge"
	TrainingInstanceTypeMl_m5_large      TrainingInstanceType = "ml.m5.large"
	TrainingInstanceTypeMl_m5_xlarge     TrainingInstanceType = "ml.m5.xlarge"
	TrainingInstanceTypeMl_m5_2xlarge    TrainingInstanceType = "ml.m5.2xlarge"
	TrainingInstanceTypeMl_m5_4xlarge    TrainingInstanceType = "ml.m5.4xlarge"
	TrainingInstanceTypeMl_m5_12xlarge   TrainingInstanceType = "ml.m5.12xlarge"
	TrainingInstanceTypeMl_m5_24xlarge   TrainingInstanceType = "ml.m5.24xlarge"
	TrainingInstanceTypeMl_c4_xlarge     TrainingInstanceType = "ml.c4.xlarge"
	TrainingInstanceTypeMl_c4_2xlarge    TrainingInstanceType = "ml.c4.2xlarge"
	TrainingInstanceTypeMl_c4_4xlarge    TrainingInstanceType = "ml.c4.4xlarge"
	TrainingInstanceTypeMl_c4_8xlarge    TrainingInstanceType = "ml.c4.8xlarge"
	TrainingInstanceTypeMl_p2_xlarge     TrainingInstanceType = "ml.p2.xlarge"
	TrainingInstanceTypeMl_p2_8xlarge    TrainingInstanceType = "ml.p2.8xlarge"
	TrainingInstanceTypeMl_p2_16xlarge   TrainingInstanceType = "ml.p2.16xlarge"
	TrainingInstanceTypeMl_p3_2xlarge    TrainingInstanceType = "ml.p3.2xlarge"
	TrainingInstanceTypeMl_p3_8xlarge    TrainingInstanceType = "ml.p3.8xlarge"
	TrainingInstanceTypeMl_p3_16xlarge   TrainingInstanceType = "ml.p3.16xlarge"
	TrainingInstanceTypeMl_p3dn_24xlarge TrainingInstanceType = "ml.p3dn.24xlarge"
	TrainingInstanceTypeMl_c5_xlarge     TrainingInstanceType = "ml.c5.xlarge"
	TrainingInstanceTypeMl_c5_2xlarge    TrainingInstanceType = "ml.c5.2xlarge"
	TrainingInstanceTypeMl_c5_4xlarge    TrainingInstanceType = "ml.c5.4xlarge"
	TrainingInstanceTypeMl_c5_9xlarge    TrainingInstanceType = "ml.c5.9xlarge"
	TrainingInstanceTypeMl_c5_18xlarge   TrainingInstanceType = "ml.c5.18xlarge"
	TrainingInstanceTypeMl_c5n_xlarge    TrainingInstanceType = "ml.c5n.xlarge"
	TrainingInstanceTypeMl_c5n_2xlarge   TrainingInstanceType = "ml.c5n.2xlarge"
	TrainingInstanceTypeMl_c5n_4xlarge   TrainingInstanceType = "ml.c5n.4xlarge"
	TrainingInstanceTypeMl_c5n_9xlarge   TrainingInstanceType = "ml.c5n.9xlarge"
	TrainingInstanceTypeMl_c5n_18xlarge  TrainingInstanceType = "ml.c5n.18xlarge"
)

Enum values for TrainingInstanceType

type TrainingJob

type TrainingJob struct {

	// Information about the algorithm used for training, and algorithm metadata.
	AlgorithmSpecification *AlgorithmSpecification

	// The Amazon Resource Name (ARN) of the job.
	AutoMLJobArn *string

	// The billable time in seconds.
	BillableTimeInSeconds *int32

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// A timestamp that indicates when the training job was created.
	CreationTime *time.Time

	// Configuration information for the debug hook parameters, collection
	// configuration, and storage paths.
	DebugHookConfig *DebugHookConfig

	// Information about the debug rule configuration.
	DebugRuleConfigurations []*DebugRuleConfiguration

	// Information about the evaluation status of the rules for the training job.
	DebugRuleEvaluationStatuses []*DebugRuleEvaluationStatus

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True. Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// When true, enables managed spot training using Amazon EC2 Spot instances to run
	// training jobs instead of on-demand instances. For more information, see Managed
	// Spot Training
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html).
	EnableManagedSpotTraining *bool

	// If the TrainingJob was created with network isolation, the value is set to true.
	// If network isolation is enabled, nodes can't communicate beyond the VPC they run
	// in.
	EnableNetworkIsolation *bool

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//
	//     * CreateProcessingJob
	//
	//     *
	// CreateTrainingJob
	//
	//     * CreateTransformJob
	ExperimentConfig *ExperimentConfig

	// If the training job failed, the reason it failed.
	FailureReason *string

	// A list of final metric values that are set when the training job completes. Used
	// only if the training job was configured to use metrics.
	FinalMetricDataList []*MetricData

	// Algorithm-specific parameters.
	HyperParameters map[string]*string

	// An array of Channel objects that describes each data input channel.
	InputDataConfig []*Channel

	// The Amazon Resource Name (ARN) of the labeling job.
	LabelingJobArn *string

	// A timestamp that indicates when the status of the training job was last
	// modified.
	LastModifiedTime *time.Time

	// Information about the Amazon S3 location that is configured for storing model
	// artifacts.
	ModelArtifacts *ModelArtifacts

	// The S3 path where model artifacts that you configured when creating the job are
	// stored. Amazon SageMaker creates subfolders for model artifacts.
	OutputDataConfig *OutputDataConfig

	// Resources, including ML compute instances and ML storage volumes, that are
	// configured for model training.
	ResourceConfig *ResourceConfig

	// The AWS Identity and Access Management (IAM) role configured for the training
	// job.
	RoleArn *string

	// Provides detailed information about the state of the training job. For detailed
	// information about the secondary status of the training job, see StatusMessage
	// under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and
	// secondary statuses that apply to each of them: InProgress
	//
	//     * Starting -
	// Starting the training job.
	//
	//     * Downloading - An optional stage for algorithms
	// that support File training input mode. It indicates that data is being
	// downloaded to the ML storage volumes.
	//
	//     * Training - Training is in
	// progress.
	//
	//     * Uploading - Training is complete and the model artifacts are
	// being uploaded to the S3 location.
	//
	// Completed
	//
	//     * Completed - The training
	// job has completed.
	//
	// Failed
	//
	//     * Failed - The training job has failed. The
	// reason for the failure is returned in the FailureReason field of
	// DescribeTrainingJobResponse.
	//
	// Stopped
	//
	//     * MaxRuntimeExceeded - The job
	// stopped because it exceeded the maximum allowed runtime.
	//
	//     * Stopped - The
	// training job has stopped.
	//
	// Stopping
	//
	//     * Stopping - Stopping the training
	// job.
	//
	// Valid values for SecondaryStatus are subject to change. We no longer
	// support the following secondary statuses:
	//
	//     * LaunchingMLInstances
	//
	//     *
	// PreparingTrainingStack
	//
	//     * DownloadingTrainingImage
	SecondaryStatus SecondaryStatus

	// A history of all of the secondary statuses that the training job has
	// transitioned through.
	SecondaryStatusTransitions []*SecondaryStatusTransition

	// Specifies a limit to how long a model training job can run. When the job reaches
	// the time limit, Amazon SageMaker ends the training job. Use this API to cap
	// model training costs. To stop a job, Amazon SageMaker sends the algorithm the
	// SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use
	// this 120-second window to save the model artifacts, so the results of training
	// are not lost.
	StoppingCondition *StoppingCondition

	// An array of key-value pairs. For more information, see Using Cost Allocation
	// Tags
	// (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what)
	// in the AWS Billing and Cost Management User Guide.
	Tags []*Tag

	// Configuration of storage locations for TensorBoard output.
	TensorBoardOutputConfig *TensorBoardOutputConfig

	// Indicates the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker
	// detects a job failure.
	TrainingEndTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	TrainingJobArn *string

	// The name of the training job.
	TrainingJobName *string

	// The status of the training job. Training job statuses are:
	//
	//     * InProgress -
	// The training is in progress.
	//
	//     * Completed - The training job has
	// completed.
	//
	//     * Failed - The training job has failed. To see the reason for
	// the failure, see the FailureReason field in the response to a
	// DescribeTrainingJobResponse call.
	//
	//     * Stopping - The training job is
	// stopping.
	//
	//     * Stopped - The training job has stopped.
	//
	// For more detailed
	// information, see SecondaryStatus.
	TrainingJobStatus TrainingJobStatus

	// Indicates the time when the training job starts on training instances. You are
	// billed for the time interval between this time and the value of TrainingEndTime.
	// The start time in CloudWatch Logs might be later than this time. The difference
	// is due to the time it takes to download the training data and to the size of the
	// training container.
	TrainingStartTime *time.Time

	// The training time in seconds.
	TrainingTimeInSeconds *int32

	// The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if
	// the training job was launched by a hyperparameter tuning job.
	TuningJobArn *string

	// A VpcConfig object that specifies the VPC that this training job has access to.
	// For more information, see Protect Training Jobs by Using an Amazon Virtual
	// Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html).
	VpcConfig *VpcConfig
}

Contains information about a training job.

type TrainingJobDefinition

type TrainingJobDefinition struct {

	// An array of Channel objects, each of which specifies an input source.
	//
	// This member is required.
	InputDataConfig []*Channel

	// the path to the S3 bucket where you want to store model artifacts. Amazon
	// SageMaker creates subfolders for the artifacts.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The resources, including the ML compute instances and ML storage volumes, to use
	// for model training.
	//
	// This member is required.
	ResourceConfig *ResourceConfig

	// Specifies a limit to how long a model training job can run. When the job reaches
	// the time limit, Amazon SageMaker ends the training job. Use this API to cap
	// model training costs. To stop a job, Amazon SageMaker sends the algorithm the
	// SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use
	// this 120-second window to save the model artifacts.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// The input mode used by the algorithm for the training job. For the input modes
	// that Amazon SageMaker algorithms support, see Algorithms
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). If an algorithm
	// supports the File input mode, Amazon SageMaker downloads the training data from
	// S3 to the provisioned ML storage Volume, and mounts the directory to docker
	// volume for training container. If an algorithm supports the Pipe input mode,
	// Amazon SageMaker streams data directly from S3 to the container.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The hyperparameters used for the training job.
	HyperParameters map[string]*string
}

Defines the input needed to run a training job using the algorithm.

type TrainingJobEarlyStoppingType

type TrainingJobEarlyStoppingType string
const (
	TrainingJobEarlyStoppingTypeOff  TrainingJobEarlyStoppingType = "Off"
	TrainingJobEarlyStoppingTypeAuto TrainingJobEarlyStoppingType = "Auto"
)

Enum values for TrainingJobEarlyStoppingType

type TrainingJobSortByOptions

type TrainingJobSortByOptions string
const (
	TrainingJobSortByOptionsName                      TrainingJobSortByOptions = "Name"
	TrainingJobSortByOptionsCreationtime              TrainingJobSortByOptions = "CreationTime"
	TrainingJobSortByOptionsStatus                    TrainingJobSortByOptions = "Status"
	TrainingJobSortByOptionsFinalobjectivemetricvalue TrainingJobSortByOptions = "FinalObjectiveMetricValue"
)

Enum values for TrainingJobSortByOptions

type TrainingJobStatus

type TrainingJobStatus string
const (
	TrainingJobStatusIn_progress TrainingJobStatus = "InProgress"
	TrainingJobStatusCompleted   TrainingJobStatus = "Completed"
	TrainingJobStatusFailed      TrainingJobStatus = "Failed"
	TrainingJobStatusStopping    TrainingJobStatus = "Stopping"
	TrainingJobStatusStopped     TrainingJobStatus = "Stopped"
)

Enum values for TrainingJobStatus

type TrainingJobStatusCounters

type TrainingJobStatusCounters struct {

	// The number of completed training jobs launched by the hyperparameter tuning job.
	Completed *int32

	// The number of in-progress training jobs launched by a hyperparameter tuning job.
	InProgress *int32

	// The number of training jobs that failed and can't be retried. A failed training
	// job can't be retried if it failed because a client error occurred.
	NonRetryableError *int32

	// The number of training jobs that failed, but can be retried. A failed training
	// job can be retried only if it failed because an internal service error occurred.
	RetryableError *int32

	// The number of training jobs launched by a hyperparameter tuning job that were
	// manually stopped.
	Stopped *int32
}

The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.

type TrainingJobSummary

type TrainingJobSummary struct {

	// A timestamp that shows when the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job that you want a summary for.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// Timestamp when the training job was last modified.
	LastModifiedTime *time.Time

	// A timestamp that shows when the training job ended. This field is set only if
	// the training job has one of the terminal statuses (Completed, Failed, or
	// Stopped).
	TrainingEndTime *time.Time
}

Provides summary information about a training job.

type TrainingSpecification

type TrainingSpecification struct {

	// A list of the instance types that this algorithm can use for training.
	//
	// This member is required.
	SupportedTrainingInstanceTypes []TrainingInstanceType

	// A list of ChannelSpecification objects, which specify the input sources to be
	// used by the algorithm.
	//
	// This member is required.
	TrainingChannels []*ChannelSpecification

	// The Amazon ECR registry path of the Docker image that contains the training
	// algorithm.
	//
	// This member is required.
	TrainingImage *string

	// A list of MetricDefinition objects, which are used for parsing metrics generated
	// by the algorithm.
	MetricDefinitions []*MetricDefinition

	// A list of the HyperParameterSpecification objects, that define the supported
	// hyperparameters. This is required if the algorithm supports automatic model
	// tuning.>
	SupportedHyperParameters []*HyperParameterSpecification

	// A list of the metrics that the algorithm emits that can be used as the objective
	// metric in a hyperparameter tuning job.
	SupportedTuningJobObjectiveMetrics []*HyperParameterTuningJobObjective

	// Indicates whether the algorithm supports distributed training. If set to false,
	// buyers can't request more than one instance during training.
	SupportsDistributedTraining *bool

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	TrainingImageDigest *string
}

Defines how the algorithm is used for a training job.

type TransformDataSource

type TransformDataSource struct {

	// The S3 location of the data source that is associated with a channel.
	//
	// This member is required.
	S3DataSource *TransformS3DataSource
}

Describes the location of the channel data.

type TransformInput

type TransformInput struct {

	// Describes the location of the channel data, which is, the S3 location of the
	// input data that the model can consume.
	//
	// This member is required.
	DataSource *TransformDataSource

	// If your transform data is compressed, specify the compression type. Amazon
	// SageMaker automatically decompresses the data for the transform job accordingly.
	// The default value is None.
	CompressionType CompressionType

	// The multipurpose internet mail extension (MIME) type of the data. Amazon
	// SageMaker uses the MIME type with each http call to transfer data to the
	// transform job.
	ContentType *string

	// The method to use to split the transform job's data files into smaller batches.
	// Splitting is necessary when the total size of each object is too large to fit in
	// a single request. You can also use data splitting to improve performance by
	// processing multiple concurrent mini-batches. The default value for SplitType is
	// None, which indicates that input data files are not split, and request payloads
	// contain the entire contents of an input object. Set the value of this parameter
	// to Line to split records on a newline character boundary. SplitType also
	// supports a number of record-oriented binary data formats. When splitting is
	// enabled, the size of a mini-batch depends on the values of the BatchStrategy and
	// MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord,
	// Amazon SageMaker sends the maximum number of records in each request, up to the
	// MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon
	// SageMaker sends individual records in each request. Some data formats represent
	// a record as a binary payload wrapped with extra padding bytes. When splitting is
	// applied to a binary data format, padding is removed if the value of
	// BatchStrategy is set to SingleRecord. Padding is not removed if the value of
	// BatchStrategy is set to MultiRecord. For more information about RecordIO, see
	// Create a Dataset Using RecordIO (https://mxnet.apache.org/api/faq/recordio) in
	// the MXNet documentation. For more information about TFRecord, see Consuming
	// TFRecord data
	// (https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data) in the
	// TensorFlow documentation.
	SplitType SplitType
}

Describes the input source of a transform job and the way the transform job consumes it.

type TransformInstanceType

type TransformInstanceType string
const (
	TransformInstanceTypeMl_m4_xlarge   TransformInstanceType = "ml.m4.xlarge"
	TransformInstanceTypeMl_m4_2xlarge  TransformInstanceType = "ml.m4.2xlarge"
	TransformInstanceTypeMl_m4_4xlarge  TransformInstanceType = "ml.m4.4xlarge"
	TransformInstanceTypeMl_m4_10xlarge TransformInstanceType = "ml.m4.10xlarge"
	TransformInstanceTypeMl_m4_16xlarge TransformInstanceType = "ml.m4.16xlarge"
	TransformInstanceTypeMl_c4_xlarge   TransformInstanceType = "ml.c4.xlarge"
	TransformInstanceTypeMl_c4_2xlarge  TransformInstanceType = "ml.c4.2xlarge"
	TransformInstanceTypeMl_c4_4xlarge  TransformInstanceType = "ml.c4.4xlarge"
	TransformInstanceTypeMl_c4_8xlarge  TransformInstanceType = "ml.c4.8xlarge"
	TransformInstanceTypeMl_p2_xlarge   TransformInstanceType = "ml.p2.xlarge"
	TransformInstanceTypeMl_p2_8xlarge  TransformInstanceType = "ml.p2.8xlarge"
	TransformInstanceTypeMl_p2_16xlarge TransformInstanceType = "ml.p2.16xlarge"
	TransformInstanceTypeMl_p3_2xlarge  TransformInstanceType = "ml.p3.2xlarge"
	TransformInstanceTypeMl_p3_8xlarge  TransformInstanceType = "ml.p3.8xlarge"
	TransformInstanceTypeMl_p3_16xlarge TransformInstanceType = "ml.p3.16xlarge"
	TransformInstanceTypeMl_c5_xlarge   TransformInstanceType = "ml.c5.xlarge"
	TransformInstanceTypeMl_c5_2xlarge  TransformInstanceType = "ml.c5.2xlarge"
	TransformInstanceTypeMl_c5_4xlarge  TransformInstanceType = "ml.c5.4xlarge"
	TransformInstanceTypeMl_c5_9xlarge  TransformInstanceType = "ml.c5.9xlarge"
	TransformInstanceTypeMl_c5_18xlarge TransformInstanceType = "ml.c5.18xlarge"
	TransformInstanceTypeMl_m5_large    TransformInstanceType = "ml.m5.large"
	TransformInstanceTypeMl_m5_xlarge   TransformInstanceType = "ml.m5.xlarge"
	TransformInstanceTypeMl_m5_2xlarge  TransformInstanceType = "ml.m5.2xlarge"
	TransformInstanceTypeMl_m5_4xlarge  TransformInstanceType = "ml.m5.4xlarge"
	TransformInstanceTypeMl_m5_12xlarge TransformInstanceType = "ml.m5.12xlarge"
	TransformInstanceTypeMl_m5_24xlarge TransformInstanceType = "ml.m5.24xlarge"
)

Enum values for TransformInstanceType

type TransformJob

type TransformJob struct {

	// The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
	AutoMLJobArn *string

	// Specifies the number of records to include in a mini-batch for an HTTP inference
	// request. A record is a single unit of input data that inference can be made on.
	// For example, a single line in a CSV file is a record.
	BatchStrategy BatchStrategy

	// A timestamp that shows when the transform Job was created.
	CreationTime *time.Time

	// The data structure used to specify the data to be used for inference in a batch
	// transform job and to associate the data that is relevant to the prediction
	// results in the output. The input filter provided allows you to exclude input
	// data that is not needed for inference in a batch transform job. The output
	// filter provided allows you to include input data relevant to interpreting the
	// predictions in the output from the job. For more information, see Associate
	// Prediction Results with their Corresponding Input Records
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html).
	DataProcessing *DataProcessing

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]*string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//
	//     * CreateProcessingJob
	//
	//     *
	// CreateTrainingJob
	//
	//     * CreateTransformJob
	ExperimentConfig *ExperimentConfig

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// The Amazon Resource Name (ARN) of the labeling job that created the transform
	// job.
	LabelingJobArn *string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker
	// checks the optional execution-parameters to determine the settings for your
	// chosen algorithm. If the execution-parameters endpoint is not enabled, the
	// default value is 1. For built-in algorithms, you don't need to set a value for
	// MaxConcurrentTransforms.
	MaxConcurrentTransforms *int32

	// The maximum allowed size of the payload, in MB. A payload is the data portion of
	// a record (without metadata). The value in MaxPayloadInMB must be greater than,
	// or equal to, the size of a single record. To estimate the size of a record in
	// MB, divide the size of your dataset by the number of records. To ensure that the
	// records fit within the maximum payload size, we recommend using a slightly
	// larger value. The default value is 6 MB. For cases where the payload might be
	// arbitrarily large and is transmitted using HTTP chunked encoding, set the value
	// to 0. This feature works only in supported algorithms. Currently, SageMaker
	// built-in algorithms do not support HTTP chunked encoding.
	MaxPayloadInMB *int32

	// Configures the timeout and maximum number of retries for processing a transform
	// job invocation.
	ModelClientConfig *ModelClientConfig

	// The name of the model associated with the transform job.
	ModelName *string

	// A list of tags associated with the transform job.
	Tags []*Tag

	// Indicates when the transform job has been completed, or has stopped or failed.
	// You are billed for the time interval between this time and the value of
	// TransformStartTime.
	TransformEndTime *time.Time

	// Describes the input source of a transform job and the way the transform job
	// consumes it.
	TransformInput *TransformInput

	// The Amazon Resource Name (ARN) of the transform job.
	TransformJobArn *string

	// The name of the transform job.
	TransformJobName *string

	// The status of the transform job. Transform job statuses are:
	//
	//     * InProgress -
	// The job is in progress.
	//
	//     * Completed - The job has completed.
	//
	//     * Failed
	// - The transform job has failed. To see the reason for the failure, see the
	// FailureReason field in the response to a DescribeTransformJob call.
	//
	//     *
	// Stopping - The transform job is stopping.
	//
	//     * Stopped - The transform job has
	// stopped.
	TransformJobStatus TransformJobStatus

	// Describes the results of a transform job.
	TransformOutput *TransformOutput

	// Describes the resources, including ML instance types and ML instance count, to
	// use for transform job.
	TransformResources *TransformResources

	// Indicates when the transform job starts on ML instances. You are billed for the
	// time interval between this time and the value of TransformEndTime.
	TransformStartTime *time.Time
}

A batch transform job. For information about SageMaker batch transform, see Use Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html).

type TransformJobDefinition

type TransformJobDefinition struct {

	// A description of the input source and the way the transform job consumes it.
	//
	// This member is required.
	TransformInput *TransformInput

	// Identifies the Amazon S3 location where you want Amazon SageMaker to save the
	// results from the transform job.
	//
	// This member is required.
	TransformOutput *TransformOutput

	// Identifies the ML compute instances for the transform job.
	//
	// This member is required.
	TransformResources *TransformResources

	// A string that determines the number of records included in a single mini-batch.
	// SingleRecord means only one record is used per mini-batch. MultiRecord means a
	// mini-batch is set to contain as many records that can fit within the
	// MaxPayloadInMB limit.
	BatchStrategy BatchStrategy

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]*string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. The default value is 1.
	MaxConcurrentTransforms *int32

	// The maximum payload size allowed, in MB. A payload is the data portion of a
	// record (without metadata).
	MaxPayloadInMB *int32
}

Defines the input needed to run a transform job using the inference specification specified in the algorithm.

type TransformJobStatus

type TransformJobStatus string
const (
	TransformJobStatusIn_progress TransformJobStatus = "InProgress"
	TransformJobStatusCompleted   TransformJobStatus = "Completed"
	TransformJobStatusFailed      TransformJobStatus = "Failed"
	TransformJobStatusStopping    TransformJobStatus = "Stopping"
	TransformJobStatusStopped     TransformJobStatus = "Stopped"
)

Enum values for TransformJobStatus

type TransformJobSummary

type TransformJobSummary struct {

	// A timestamp that shows when the transform Job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the transform job.
	//
	// This member is required.
	TransformJobArn *string

	// The name of the transform job.
	//
	// This member is required.
	TransformJobName *string

	// The status of the transform job.
	//
	// This member is required.
	TransformJobStatus TransformJobStatus

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// Indicates when the transform job was last modified.
	LastModifiedTime *time.Time

	// Indicates when the transform job ends on compute instances. For successful jobs
	// and stopped jobs, this is the exact time recorded after the results are
	// uploaded. For failed jobs, this is when Amazon SageMaker detected that the job
	// failed.
	TransformEndTime *time.Time
}

Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs call.

type TransformOutput

type TransformOutput struct {

	// The Amazon S3 path where you want Amazon SageMaker to store the results of the
	// transform job. For example, s3://bucket-name/key-name-prefix. For every S3
	// object used as input for the transform job, batch transform stores the
	// transformed data with an .out suffix in a corresponding subfolder in the
	// location in the output prefix. For example, for the input data stored at
	// s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores
	// the transformed data at
	// s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch
	// transform doesn't upload partially processed objects. For an input S3 object
	// that contains multiple records, it creates an .out file only if the transform
	// job succeeds on the entire file. When the input contains multiple S3 objects,
	// the batch transform job processes the listed S3 objects and uploads only the
	// output for successfully processed objects. If any object fails in the transform
	// job batch transform marks the job as failed to prompt investigation.
	//
	// This member is required.
	S3OutputPath *string

	// The MIME type used to specify the output data. Amazon SageMaker uses the MIME
	// type with each http call to transfer data from the transform job.
	Accept *string

	// Defines how to assemble the results of the transform job as a single S3 object.
	// Choose a format that is most convenient to you. To concatenate the results in
	// binary format, specify None. To add a newline character at the end of every
	// transformed record, specify Line.
	AssembleWith AssemblyType

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
	// KmsKeyId can be any of the following formats:
	//
	//     * Key ID:
	// 1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//     * Key ARN:
	// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//
	// * Alias name: alias/ExampleAlias
	//
	//     * Alias name ARN:
	// arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	//
	// If you don't provide a
	// KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your
	// role's account. For more information, see KMS-Managed Encryption Keys
	// (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the
	// Amazon Simple Storage Service Developer Guide. The KMS key policy must grant
	// permission to the IAM role that you specify in your CreateModel request. For
	// more information, see Using Key Policies in AWS KMS
	// (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the
	// AWS Key Management Service Developer Guide.
	KmsKeyId *string
}

Describes the results of a transform job.

type TransformResources

type TransformResources struct {

	// The number of ML compute instances to use in the transform job. For distributed
	// transform jobs, specify a value greater than 1. The default value is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the transform job. If you are using built-in
	// algorithms to transform moderately sized datasets, we recommend using
	// ml.m4.xlarge or ml.m5.large instance types.
	//
	// This member is required.
	InstanceType TransformInstanceType

	// The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to
	// encrypt model data on the storage volume attached to the ML compute instance(s)
	// that run the batch transform job. The VolumeKmsKeyId can be any of the following
	// formats:
	//
	//     * Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//     * Key ARN:
	// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//
	// * Alias name: alias/ExampleAlias
	//
	//     * Alias name ARN:
	// arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	VolumeKmsKeyId *string
}

Describes the resources, including ML instance types and ML instance count, to use for transform job.

type TransformS3DataSource

type TransformS3DataSource struct {

	// If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker
	// uses all objects with the specified key name prefix for batch transform. If you
	// choose ManifestFile, S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want Amazon SageMaker to use for batch
	// transform. The following values are compatible: ManifestFile, S3Prefix The
	// following value is not compatible: AugmentedManifestFile
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType, identifies either a key
	// name prefix or a manifest. For example:
	//
	//     * A key name prefix might look like
	// this: s3://bucketname/exampleprefix.
	//
	//     * A manifest might look like this:
	// s3://bucketname/example.manifest The manifest is an S3 object which is a JSON
	// file with the following format: [ {"prefix":
	// "s3://customer_bucket/some/prefix/"},"relative/path/to/custdata-1","relative/path/custdata-2",..."relative/path/custdata-N"]
	// The preceding JSON matches the following S3Uris:
	// s3://customer_bucket/some/prefix/relative/path/to/custdata-1s3://customer_bucket/some/prefix/relative/path/custdata-2...s3://customer_bucket/some/prefix/relative/path/custdata-N
	// The complete set of S3Uris in this manifest constitutes the input data for the
	// channel for this datasource. The object that each S3Uris points to must be
	// readable by the IAM role that Amazon SageMaker uses to perform tasks on your
	// behalf.
	//
	// This member is required.
	S3Uri *string
}

Describes the S3 data source.

type Trial

type Trial struct {

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	CreatedBy *UserContext

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName is
	// displayed.
	DisplayName *string

	// The name of the experiment the trial is part of.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	LastModifiedBy *UserContext

	// Who last modified the trial.
	LastModifiedTime *time.Time

	// The source of the trial.
	Source *TrialSource

	// The list of tags that are associated with the trial. You can use Search API to
	// search on the tags.
	Tags []*Tag

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// A list of the components associated with the trial. For each component, a
	// summary of the component's properties is included.
	TrialComponentSummaries []*TrialComponentSimpleSummary

	// The name of the trial.
	TrialName *string
}

The properties of a trial as returned by the Search API.

type TrialComponent

type TrialComponent struct {

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// The input artifacts of the component.
	InputArtifacts map[string]*TrialComponentArtifact

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// The metrics for the component.
	Metrics []*TrialComponentMetricSummary

	// The output artifacts of the component.
	OutputArtifacts map[string]*TrialComponentArtifact

	// The hyperparameters of the component.
	Parameters map[string]*TrialComponentParameterValue

	// An array of the parents of the component. A parent is a trial the component is
	// associated with and the experiment the trial is part of. A component might not
	// have any parents.
	Parents []*Parent

	// The Amazon Resource Name (ARN) and job type of the source of the component.
	Source *TrialComponentSource

	// Details of the source of the component.
	SourceDetail *TrialComponentSourceDetail

	// When the component started.
	StartTime *time.Time

	// The status of the trial component.
	Status *TrialComponentStatus

	// The list of tags that are associated with the component. You can use Search API
	// to search on the tags.
	Tags []*Tag

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string
}

The properties of a trial component as returned by the Search API.

type TrialComponentArtifact

type TrialComponentArtifact struct {

	// The location of the artifact.
	//
	// This member is required.
	Value *string

	// The media type of the artifact, which indicates the type of data in the artifact
	// file. The media type consists of a type and a subtype concatenated with a slash
	// (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies
	// the category of the media. The subtype specifies the kind of data.
	MediaType *string
}

Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent request. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.

type TrialComponentMetricSummary

type TrialComponentMetricSummary struct {

	// The average value of the metric.
	Avg *float64

	// The number of samples used to generate the metric.
	Count *int32

	// The most recent value of the metric.
	Last *float64

	// The maximum value of the metric.
	Max *float64

	// The name of the metric.
	MetricName *string

	// The minimum value of the metric.
	Min *float64

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// The standard deviation of the metric.
	StdDev *float64

	// When the metric was last updated.
	TimeStamp *time.Time
}

A summary of the metrics of a trial component.

type TrialComponentParameterValue

type TrialComponentParameterValue struct {

	// The numeric value of a numeric hyperparameter. If you specify a value for this
	// parameter, you can't specify the StringValue parameter.
	NumberValue *float64

	// The string value of a categorical hyperparameter. If you specify a value for
	// this parameter, you can't specify the NumberValue parameter.
	StringValue *string
}

The value of a hyperparameter. Only one of NumberValue or StringValue can be specified. This object is specified in the CreateTrialComponent request.

type TrialComponentPrimaryStatus

type TrialComponentPrimaryStatus string
const (
	TrialComponentPrimaryStatusIn_progress TrialComponentPrimaryStatus = "InProgress"
	TrialComponentPrimaryStatusCompleted   TrialComponentPrimaryStatus = "Completed"
	TrialComponentPrimaryStatusFailed      TrialComponentPrimaryStatus = "Failed"
	TrialComponentPrimaryStatusStopping    TrialComponentPrimaryStatus = "Stopping"
	TrialComponentPrimaryStatusStopped     TrialComponentPrimaryStatus = "Stopped"
)

Enum values for TrialComponentPrimaryStatus

type TrialComponentSimpleSummary

type TrialComponentSimpleSummary struct {

	// Information about the user who created or modified an experiment, trial, or
	// trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource
}

A short summary of a trial component.

type TrialComponentSource

type TrialComponentSource struct {

	// The source ARN.
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string
}

The Amazon Resource Name (ARN) and job type of the source of a trial component.

type TrialComponentSourceDetail

type TrialComponentSourceDetail struct {

	// Information about a processing job that's the source of a trial component.
	ProcessingJob *ProcessingJob

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// Information about a training job that's the source of a trial component.
	TrainingJob *TrainingJob

	// Information about a transform job that's the source of the trial component.
	TransformJob *TransformJob
}

Detailed information about the source of a trial component. Either ProcessingJob or TrainingJob is returned.

type TrialComponentStatus

type TrialComponentStatus struct {

	// If the component failed, a message describing why.
	Message *string

	// The status of the trial component.
	PrimaryStatus TrialComponentPrimaryStatus
}

The status of the trial component.

type TrialComponentSummary

type TrialComponentSummary struct {

	// Who created the component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// Who last modified the component.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// When the component started.
	StartTime *time.Time

	// The status of the component. States include:
	//
	//     * InProgress
	//
	//     *
	// Completed
	//
	//     * Failed
	Status *TrialComponentStatus

	// The ARN of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource
}

A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent API and provide the TrialComponentName.

type TrialSource

type TrialSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string
}

The source of the trial.

type TrialSummary

type TrialSummary struct {

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName is
	// displayed.
	DisplayName *string

	// When the trial was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// The name of the trial.
	TrialName *string

	// The source of the trial.
	TrialSource *TrialSource
}

A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial API and provide the TrialName.

type TuningJobCompletionCriteria

type TuningJobCompletionCriteria struct {

	// The objective metric's value.
	//
	// This member is required.
	TargetObjectiveMetricValue *float32
}

The job completion criteria.

type USD

type USD struct {

	// The fractional portion, in cents, of the amount.
	Cents *int32

	// The whole number of dollars in the amount.
	Dollars *int32

	// Fractions of a cent, in tenths.
	TenthFractionsOfACent *int32
}

Represents an amount of money in United States dollars/

type UiConfig

type UiConfig struct {

	// The ARN of the worker task template used to render the worker UI and tools for
	// labeling job tasks. Use this parameter when you are creating a labeling job for
	// 3D point cloud and video fram labeling jobs. Use your labeling job task type to
	// select one of the following ARN's and use it with this parameter when you create
	// a labeling job. Replace aws-region with the AWS region you are creating your
	// labeling job in. 3D Point Cloud HumanTaskUiArns Use this HumanTaskUiArn for 3D
	// point cloud object detection and 3D point cloud object detection adjustment
	// labeling jobs.
	//
	//     *
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection
	//
	// Use
	// this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object
	// tracking adjustment labeling jobs.
	//
	//     *
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking
	//
	// Use
	// this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud
	// semantic segmentation adjustment labeling jobs.
	//
	//     *
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
	//
	// Video
	// Frame HumanTaskUiArns Use this HumanTaskUiArn for video frame object detection
	// and video frame object detection adjustment labeling jobs.
	//
	//     *
	// arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection
	//
	// Use
	// this HumanTaskUiArn for video frame object tracking and video frame object
	// tracking adjustment labeling jobs.
	//
	//     *
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
	HumanTaskUiArn *string

	// The Amazon S3 bucket location of the UI template, or worker task template. This
	// is the template used to render the worker UI and tools for labeling job tasks.
	// For more information about the contents of a UI template, see  Creating Your
	// Custom Labeling Task Template
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html).
	UiTemplateS3Uri *string
}

Provided configuration information for the worker UI for a labeling job.

type UiTemplate

type UiTemplate struct {

	// The content of the Liquid template for the worker user interface.
	//
	// This member is required.
	Content *string
}

The Liquid template for the worker user interface.

type UiTemplateInfo

type UiTemplateInfo struct {

	// The SHA-256 digest of the contents of the template.
	ContentSha256 *string

	// The URL for the user interface template.
	Url *string
}

Container for user interface template information.

type UserContext

type UserContext struct {

	// The domain associated with the user.
	DomainId *string

	// The Amazon Resource Name (ARN) of the user's profile.
	UserProfileArn *string

	// The name of the user's profile.
	UserProfileName *string
}

Information about the user who created or modified an experiment, trial, or trial component.

type UserProfileDetails

type UserProfileDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status UserProfileStatus

	// The user profile name.
	UserProfileName *string
}

The user profile details.

type UserProfileSortKey

type UserProfileSortKey string
const (
	UserProfileSortKeyCreationtime     UserProfileSortKey = "CreationTime"
	UserProfileSortKeyLastmodifiedtime UserProfileSortKey = "LastModifiedTime"
)

Enum values for UserProfileSortKey

type UserProfileStatus

type UserProfileStatus string
const (
	UserProfileStatusDeleting  UserProfileStatus = "Deleting"
	UserProfileStatusFailed    UserProfileStatus = "Failed"
	UserProfileStatusInservice UserProfileStatus = "InService"
	UserProfileStatusPending   UserProfileStatus = "Pending"
)

Enum values for UserProfileStatus

type UserSettings

type UserSettings struct {

	// The execution role for the user.
	ExecutionRole *string

	// The Jupyter server's app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The kernel gateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// The security groups.
	SecurityGroups []*string

	// The sharing settings.
	SharingSettings *SharingSettings

	// The TensorBoard app settings.
	TensorBoardAppSettings *TensorBoardAppSettings
}

A collection of settings.

type VariantProperty

type VariantProperty struct {

	// The type of variant property. The supported values are:
	//
	//     *
	// DesiredInstanceCount: Overrides the existing variant instance counts using the
	// ProductionVariant$InitialInstanceCount values in the
	// CreateEndpointConfigInput$ProductionVariants.
	//
	//     * DesiredWeight: Overrides
	// the existing variant weights using the ProductionVariant$InitialVariantWeight
	// values in the CreateEndpointConfigInput$ProductionVariants.
	//
	//     *
	// DataCaptureConfig: (Not currently supported.)
	//
	// This member is required.
	VariantPropertyType VariantPropertyType
}

Specifies a production variant property type for an Endpoint. If you are updating an endpoint with the UpdateEndpointInput$RetainAllVariantProperties option set to true, the VariantProperty objects listed in UpdateEndpointInput$ExcludeRetainedVariantProperties override the existing variant properties of the endpoint.

type VariantPropertyType

type VariantPropertyType string
const (
	VariantPropertyTypeDesiredinstancecount VariantPropertyType = "DesiredInstanceCount"
	VariantPropertyTypeDesiredweight        VariantPropertyType = "DesiredWeight"
	VariantPropertyTypeDatacaptureconfig    VariantPropertyType = "DataCaptureConfig"
)

Enum values for VariantPropertyType

type VpcConfig

type VpcConfig struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups
	// for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []*string

	// The ID of the subnets in the VPC to which you want to connect your training job
	// or model. For information about the availability of specific instance types, see
	// Supported Instance Types and Availability Zones
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html).
	//
	// This member is required.
	Subnets []*string
}

Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html) and Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html).

type Workforce

type Workforce struct {

	// The Amazon Resource Name (ARN) of the private workforce.
	//
	// This member is required.
	WorkforceArn *string

	// The name of the private workforce.
	//
	// This member is required.
	WorkforceName *string

	// The configuration of an Amazon Cognito workforce. A single Cognito workforce is
	// created using and corresponds to a single  Amazon Cognito user pool
	// (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html).
	CognitoConfig *CognitoConfig

	// The date that the workforce is created.
	CreateDate *time.Time

	// The most recent date that was used to successfully add one or more IP address
	// ranges (CIDRs
	// (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)) to a
	// private workforce's allow list.
	LastUpdatedDate *time.Time

	// The configuration of an OIDC Identity Provider (IdP) private workforce.
	OidcConfig *OidcConfigForResponse

	// A list of one to ten IP address ranges (CIDRs
	// (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)) to be added
	// to the workforce allow list.
	SourceIpConfig *SourceIpConfig

	// The subdomain for your OIDC Identity Provider.
	SubDomain *string
}

A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html).

type Workteam

type Workteam struct {

	// A description of the work team.
	//
	// This member is required.
	Description *string

	// The Amazon Cognito user groups that make up the work team.
	//
	// This member is required.
	MemberDefinitions []*MemberDefinition

	// The Amazon Resource Name (ARN) that identifies the work team.
	//
	// This member is required.
	WorkteamArn *string

	// The name of the work team.
	//
	// This member is required.
	WorkteamName *string

	// The date and time that the work team was created (timestamp).
	CreateDate *time.Time

	// The date and time that the work team was last updated (timestamp).
	LastUpdatedDate *time.Time

	// Configures SNS notifications of available or expiring work items for work teams.
	NotificationConfiguration *NotificationConfiguration

	// The Amazon Marketplace identifier for a vendor's work team.
	ProductListingIds []*string

	// The URI of the labeling job's user interface. Workers open this URI to start
	// labeling your data objects.
	SubDomain *string

	// The Amazon Resource Name (ARN) of the workforce.
	WorkforceArn *string
}

Provides details about a labeling work team.

Source Files

enums.go errors.go types.go

Version
v0.27.0
Published
Oct 17, 2020
Platform
darwin/amd64
Imports
3 packages
Last checked
2 minutes ago

Tools for package owners.