package types
import "github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
Index ¶
- type AlgorithmSortBy
- type AlgorithmSpecification
- type AlgorithmStatus
- type AlgorithmStatusDetails
- type AlgorithmStatusItem
- type AlgorithmSummary
- type AlgorithmValidationProfile
- type AlgorithmValidationSpecification
- type AnnotationConsolidationConfig
- type AppDetails
- type AppInstanceType
- type AppSortKey
- type AppSpecification
- type AppStatus
- type AppType
- type AssemblyType
- type AuthMode
- type AutoMLCandidate
- type AutoMLCandidateStep
- type AutoMLChannel
- type AutoMLContainerDefinition
- type AutoMLDataSource
- type AutoMLJobArtifacts
- type AutoMLJobCompletionCriteria
- type AutoMLJobConfig
- type AutoMLJobObjective
- type AutoMLJobObjectiveType
- type AutoMLJobSecondaryStatus
- type AutoMLJobStatus
- type AutoMLJobSummary
- type AutoMLMetricEnum
- type AutoMLOutputDataConfig
- type AutoMLS3DataSource
- type AutoMLS3DataType
- type AutoMLSecurityConfig
- type AutoMLSortBy
- type AutoMLSortOrder
- type AwsManagedHumanLoopRequestSource
- type BatchStrategy
- type BooleanOperator
- type CandidateSortBy
- type CandidateStatus
- type CandidateStepType
- type CaptureContentTypeHeader
- type CaptureMode
- type CaptureOption
- type CaptureStatus
- type CategoricalParameterRange
- type CategoricalParameterRangeSpecification
- type Channel
- type ChannelSpecification
- type CheckpointConfig
- type CodeRepositorySortBy
- type CodeRepositorySortOrder
- type CodeRepositorySummary
- type CognitoConfig
- type CognitoMemberDefinition
- type CollectionConfiguration
- type CompilationJobStatus
- type CompilationJobSummary
- type CompressionType
- type ConflictException
- func (e *ConflictException) Error() string
- func (e *ConflictException) ErrorCode() string
- func (e *ConflictException) ErrorFault() smithy.ErrorFault
- func (e *ConflictException) ErrorMessage() string
- type ContainerDefinition
- type ContainerMode
- type ContentClassifier
- type ContinuousParameterRange
- type ContinuousParameterRangeSpecification
- type DataCaptureConfig
- type DataCaptureConfigSummary
- type DataProcessing
- type DataSource
- type DebugHookConfig
- type DebugRuleConfiguration
- type DebugRuleEvaluationStatus
- type DeployedImage
- type DesiredWeightAndCapacity
- type DetailedAlgorithmStatus
- type DetailedModelPackageStatus
- type DirectInternetAccess
- type DomainDetails
- type DomainStatus
- type EndpointConfigSortKey
- type EndpointConfigSummary
- type EndpointInput
- type EndpointSortKey
- type EndpointStatus
- type EndpointSummary
- type ExecutionStatus
- type Experiment
- type ExperimentConfig
- type ExperimentSource
- type ExperimentSummary
- type FileSystemAccessMode
- type FileSystemDataSource
- type FileSystemType
- type Filter
- type FinalAutoMLJobObjectiveMetric
- type FinalHyperParameterTuningJobObjectiveMetric
- type FlowDefinitionOutputConfig
- type FlowDefinitionStatus
- type FlowDefinitionSummary
- type Framework
- type GitConfig
- type GitConfigForUpdate
- type HumanLoopActivationConditionsConfig
- type HumanLoopActivationConfig
- type HumanLoopConfig
- type HumanLoopRequestSource
- type HumanTaskConfig
- type HumanTaskUiStatus
- type HumanTaskUiSummary
- type HyperParameterAlgorithmSpecification
- type HyperParameterScalingType
- type HyperParameterSpecification
- type HyperParameterTrainingJobDefinition
- type HyperParameterTrainingJobSummary
- type HyperParameterTuningJobConfig
- type HyperParameterTuningJobObjective
- type HyperParameterTuningJobObjectiveType
- type HyperParameterTuningJobSortByOptions
- type HyperParameterTuningJobStatus
- type HyperParameterTuningJobStrategyType
- type HyperParameterTuningJobSummary
- type HyperParameterTuningJobWarmStartConfig
- type HyperParameterTuningJobWarmStartType
- type InferenceSpecification
- type InputConfig
- type InstanceType
- type IntegerParameterRange
- type IntegerParameterRangeSpecification
- type JoinSource
- type JupyterServerAppSettings
- type KernelGatewayAppSettings
- type LabelCounters
- type LabelCountersForWorkteam
- type LabelingJobAlgorithmsConfig
- type LabelingJobDataAttributes
- type LabelingJobDataSource
- type LabelingJobForWorkteamSummary
- type LabelingJobInputConfig
- type LabelingJobOutput
- type LabelingJobOutputConfig
- type LabelingJobResourceConfig
- type LabelingJobS3DataSource
- type LabelingJobStatus
- type LabelingJobStoppingConditions
- type LabelingJobSummary
- type ListCompilationJobsSortBy
- type ListLabelingJobsForWorkteamSortByOptions
- type ListWorkforcesSortByOptions
- type ListWorkteamsSortByOptions
- type MemberDefinition
- type MetricData
- type MetricDefinition
- type ModelArtifacts
- type ModelClientConfig
- type ModelPackageContainerDefinition
- type ModelPackageSortBy
- type ModelPackageStatus
- type ModelPackageStatusDetails
- type ModelPackageStatusItem
- type ModelPackageSummary
- type ModelPackageValidationProfile
- type ModelPackageValidationSpecification
- type ModelSortKey
- type ModelSummary
- type MonitoringAppSpecification
- type MonitoringBaselineConfig
- type MonitoringClusterConfig
- type MonitoringConstraintsResource
- type MonitoringExecutionSortKey
- type MonitoringExecutionSummary
- type MonitoringInput
- type MonitoringJobDefinition
- type MonitoringOutput
- type MonitoringOutputConfig
- type MonitoringResources
- type MonitoringS3Output
- type MonitoringScheduleConfig
- type MonitoringScheduleSortKey
- type MonitoringScheduleSummary
- type MonitoringStatisticsResource
- type MonitoringStoppingCondition
- type NestedFilters
- type NetworkConfig
- type NotebookInstanceAcceleratorType
- type NotebookInstanceLifecycleConfigSortKey
- type NotebookInstanceLifecycleConfigSortOrder
- type NotebookInstanceLifecycleConfigSummary
- type NotebookInstanceLifecycleHook
- type NotebookInstanceSortKey
- type NotebookInstanceSortOrder
- type NotebookInstanceStatus
- type NotebookInstanceSummary
- type NotebookOutputOption
- type NotificationConfiguration
- type ObjectiveStatus
- type ObjectiveStatusCounters
- type OidcConfig
- type OidcConfigForResponse
- type OidcMemberDefinition
- type Operator
- type OrderKey
- type OutputConfig
- type OutputDataConfig
- type ParameterRange
- type ParameterRanges
- type ParameterType
- type Parent
- type ParentHyperParameterTuningJob
- type ProblemType
- type ProcessingClusterConfig
- type ProcessingInput
- type ProcessingInstanceType
- type ProcessingJob
- type ProcessingJobStatus
- type ProcessingJobSummary
- type ProcessingOutput
- type ProcessingOutputConfig
- type ProcessingResources
- type ProcessingS3CompressionType
- type ProcessingS3DataDistributionType
- type ProcessingS3DataType
- type ProcessingS3Input
- type ProcessingS3InputMode
- type ProcessingS3Output
- type ProcessingS3UploadMode
- type ProcessingStoppingCondition
- type ProductionVariant
- type ProductionVariantAcceleratorType
- type ProductionVariantInstanceType
- type ProductionVariantSummary
- type PropertyNameQuery
- type PropertyNameSuggestion
- type PublicWorkforceTaskPrice
- type RecordWrapper
- type RenderableTask
- type RenderingError
- type ResolvedAttributes
- type ResourceConfig
- type ResourceInUse
- func (e *ResourceInUse) Error() string
- func (e *ResourceInUse) ErrorCode() string
- func (e *ResourceInUse) ErrorFault() smithy.ErrorFault
- func (e *ResourceInUse) ErrorMessage() string
- type ResourceLimitExceeded
- func (e *ResourceLimitExceeded) Error() string
- func (e *ResourceLimitExceeded) ErrorCode() string
- func (e *ResourceLimitExceeded) ErrorFault() smithy.ErrorFault
- func (e *ResourceLimitExceeded) ErrorMessage() string
- type ResourceLimits
- type ResourceNotFound
- func (e *ResourceNotFound) Error() string
- func (e *ResourceNotFound) ErrorCode() string
- func (e *ResourceNotFound) ErrorFault() smithy.ErrorFault
- func (e *ResourceNotFound) ErrorMessage() string
- type ResourceSpec
- type ResourceType
- type RetentionPolicy
- type RetentionType
- type RootAccess
- type RuleEvaluationStatus
- type S3DataDistribution
- type S3DataSource
- type S3DataType
- type ScheduleConfig
- type ScheduleStatus
- type SearchExpression
- type SearchRecord
- type SearchSortOrder
- type SecondaryStatus
- type SecondaryStatusTransition
- type SharingSettings
- type ShuffleConfig
- type SortBy
- type SortExperimentsBy
- type SortOrder
- type SortTrialComponentsBy
- type SortTrialsBy
- type SourceAlgorithm
- type SourceAlgorithmSpecification
- type SourceIpConfig
- type SplitType
- type StoppingCondition
- type SubscribedWorkteam
- type SuggestionQuery
- type Tag
- type TargetDevice
- type TargetPlatform
- type TargetPlatformAccelerator
- type TargetPlatformArch
- type TargetPlatformOs
- type TensorBoardAppSettings
- type TensorBoardOutputConfig
- type TrainingInputMode
- type TrainingInstanceType
- type TrainingJob
- type TrainingJobDefinition
- type TrainingJobEarlyStoppingType
- type TrainingJobSortByOptions
- type TrainingJobStatus
- type TrainingJobStatusCounters
- type TrainingJobSummary
- type TrainingSpecification
- type TransformDataSource
- type TransformInput
- type TransformInstanceType
- type TransformJob
- type TransformJobDefinition
- type TransformJobStatus
- type TransformJobSummary
- type TransformOutput
- type TransformResources
- type TransformS3DataSource
- type Trial
- type TrialComponent
- type TrialComponentArtifact
- type TrialComponentMetricSummary
- type TrialComponentParameterValue
- type TrialComponentPrimaryStatus
- type TrialComponentSimpleSummary
- type TrialComponentSource
- type TrialComponentSourceDetail
- type TrialComponentStatus
- type TrialComponentSummary
- type TrialSource
- type TrialSummary
- type TuningJobCompletionCriteria
- type USD
- type UiConfig
- type UiTemplate
- type UiTemplateInfo
- type UserContext
- type UserProfileDetails
- type UserProfileSortKey
- type UserProfileStatus
- type UserSettings
- type VariantProperty
- type VariantPropertyType
- type VpcConfig
- type Workforce
- type Workteam
Types ¶
type AlgorithmSortBy ¶
type AlgorithmSortBy string
const ( AlgorithmSortByName AlgorithmSortBy = "Name" AlgorithmSortByCreation_time AlgorithmSortBy = "CreationTime" )
Enum values for AlgorithmSortBy
type AlgorithmSpecification ¶
type AlgorithmSpecification struct { // The input mode that the algorithm supports. For the input modes that Amazon // SageMaker algorithms support, see Algorithms // (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). If an algorithm // supports the File input mode, Amazon SageMaker downloads the training data from // S3 to the provisioned ML storage Volume, and mounts the directory to docker // volume for training container. If an algorithm supports the Pipe input mode, // Amazon SageMaker streams data directly from S3 to the container. In File mode, // make sure you provision ML storage volume with sufficient capacity to // accommodate the data download from S3. In addition to the training data, the ML // storage volume also stores the output model. The algorithm container use ML // storage volume to also store intermediate information, if any. For distributed // algorithms using File mode, training data is distributed uniformly, and your // training duration is predictable if the input data objects size is approximately // same. Amazon SageMaker does not split the files any further for model training. // If the object sizes are skewed, training won't be optimal as the data // distribution is also skewed where one host in a training cluster is overloaded, // thus becoming bottleneck in training. // // This member is required. TrainingInputMode TrainingInputMode // To generate and save time-series metrics during training, set to true. The // default is false and time-series metrics aren't generated except in the // following cases: // // * You use one of the Amazon SageMaker built-in // algorithms // // * You use one of the following Prebuilt Amazon SageMaker Docker // Images // (https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html): // // // * Tensorflow (version >= 1.15) // // * MXNet (version >= 1.6) // // * // PyTorch (version >= 1.3) // // * You specify at least one MetricDefinition () EnableSageMakerMetricsTimeSeries *bool // The name of the algorithm resource to use for the training job. This must be an // algorithm resource that you created or subscribe to on AWS Marketplace. If you // specify a value for this parameter, you can't specify a value for TrainingImage. AlgorithmName *string // A list of metric definition objects. Each object specifies the metric name and // regular expressions used to parse algorithm logs. Amazon SageMaker publishes // each metric to Amazon CloudWatch. MetricDefinitions []*MetricDefinition // The registry path of the Docker image that contains the training algorithm. For // information about docker registry paths for built-in algorithms, see Algorithms // Provided by Amazon SageMaker: Common Parameters // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html). // Amazon SageMaker supports both registry/repository[:tag] and // registry/repository[@digest] image path formats. For more information, see Using // Your Own Algorithms with Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html). TrainingImage *string }
Specifies the training algorithm to use in a CreateTrainingJob () request. For more information about algorithms provided by Amazon SageMaker, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html).
type AlgorithmStatus ¶
type AlgorithmStatus string
const ( AlgorithmStatusPending AlgorithmStatus = "Pending" AlgorithmStatusIn_progress AlgorithmStatus = "InProgress" AlgorithmStatusCompleted AlgorithmStatus = "Completed" AlgorithmStatusFailed AlgorithmStatus = "Failed" AlgorithmStatusDeleting AlgorithmStatus = "Deleting" )
Enum values for AlgorithmStatus
type AlgorithmStatusDetails ¶
type AlgorithmStatusDetails struct { // The status of algorithm validation. ValidationStatuses []*AlgorithmStatusItem // The status of the scan of the algorithm's Docker image container. ImageScanStatuses []*AlgorithmStatusItem }
Specifies the validation and image scan statuses of the algorithm.
type AlgorithmStatusItem ¶
type AlgorithmStatusItem struct { // The current status. // // This member is required. Status DetailedAlgorithmStatus // if the overall status is Failed, the reason for the failure. FailureReason *string // The name of the algorithm for which the overall status is being reported. // // This member is required. Name *string }
Represents the overall status of an algorithm.
type AlgorithmSummary ¶
type AlgorithmSummary struct { // A timestamp that shows when the algorithm was created. // // This member is required. CreationTime *time.Time // A brief description of the algorithm. AlgorithmDescription *string // The overall status of the algorithm. // // This member is required. AlgorithmStatus AlgorithmStatus // The Amazon Resource Name (ARN) of the algorithm. // // This member is required. AlgorithmArn *string // The name of the algorithm that is described by the summary. // // This member is required. AlgorithmName *string }
Provides summary information about an algorithm.
type AlgorithmValidationProfile ¶
type AlgorithmValidationProfile struct { // The TrainingJobDefinition object that describes the training job that Amazon // SageMaker runs to validate your algorithm. // // This member is required. TrainingJobDefinition *TrainingJobDefinition // The name of the profile for the algorithm. The name must have 1 to 63 // characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen). // // This member is required. ProfileName *string // The TransformJobDefinition object that describes the transform job that Amazon // SageMaker runs to validate your algorithm. TransformJobDefinition *TransformJobDefinition }
Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm. The data provided in the validation profile is made available to your buyers on AWS Marketplace.
type AlgorithmValidationSpecification ¶
type AlgorithmValidationSpecification struct { // An array of AlgorithmValidationProfile objects, each of which specifies a // training job and batch transform job that Amazon SageMaker runs to validate your // algorithm. // // This member is required. ValidationProfiles []*AlgorithmValidationProfile // The IAM roles that Amazon SageMaker uses to run the training jobs. // // This member is required. ValidationRole *string }
Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
type AnnotationConsolidationConfig ¶
type AnnotationConsolidationConfig struct { // The Amazon Resource Name (ARN) of a Lambda function implements the logic for // annotation consolidation // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html) // and to process output data. This parameter is required for all labeling jobs. // For built-in task types // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html), use one // of the following Amazon SageMaker Ground Truth Lambda function ARNs for // AnnotationConsolidationLambdaArn. For custom labeling workflows, see // Post-annotation Lambda // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda). // <p> <b>Bounding box</b> - Finds the most similar boxes from different workers // based on the Jaccard index of the boxes.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox</code> </p> // <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox</code> </p> // <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox</code> </p> // <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox</code> // </p> </li> </ul> <p> <b>Image classification</b> - Uses a variant of the // Expectation Maximization approach to estimate the true class of an image based // on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass</code> // </p> </li> </ul> <p> <b>Multi-label image classification</b> - Uses a variant of // the Expectation Maximization approach to estimate the true classes of an image // based on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel</code> // </p> </li> </ul> <p> <b>Semantic segmentation</b> - Treats each pixel in an // image as a multi-class classification and treats pixel annotations from workers // as "votes" for the correct label.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation</code> // </p> </li> </ul> <p> <b>Text classification</b> - Uses a variant of the // Expectation Maximization approach to estimate the true class of text based on // annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass</code> // </p> </li> </ul> <p> <b>Multi-label text classification</b> - Uses a variant of // the Expectation Maximization approach to estimate the true classes of text based // on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel</code> // </p> </li> </ul> <p> <b>Named entity recognition</b> - Groups similar selections // and calculates aggregate boundaries, resolving to most-assigned label.</p> <ul> // <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition</code> // </p> </li> </ul> <p> <b>Named entity recognition</b> - Groups similar selections // and calculates aggregate boundaries, resolving to most-assigned label.</p> <ul> // <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition</code> // </p> </li> </ul> <p> <b>Video Classification</b> - Use this task type when you // need workers to classify videos using predefined labels that you specify. // Workers are shown videos and are asked to choose one label for each video.</p> // <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass</code> // </p> </li> </ul> <p> <b>Video Frame Object Detection</b> - Use this task type to // have workers identify and locate objects in a sequence of video frames (images // extracted from a video) using bounding boxes. For example, you can use this task // to ask workers to identify and localize various objects in a series of video // frames, such as cars, bikes, and pedestrians.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection</code> // </p> </li> </ul> <p> <b>Video Frame Object Tracking</b> - Use this task type to // have workers track the movement of objects in a sequence of video frames (images // extracted from a video) using bounding boxes. For example, you can use this task // to ask workers to track the movement of objects, such as cars, bikes, and // pedestrians. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud object detection</b> - Use this task type // when you want workers to classify objects in a 3D point cloud by drawing 3D // cuboids around objects. For example, you can use this task type to ask workers // to identify different types of objects in a point cloud, such as cars, bikes, // and pedestrians.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection</code> // </p> </li> </ul> <p> <b>3D point cloud object tracking</b> - Use this task type // when you want workers to draw 3D cuboids around objects that appear in a // sequence of 3D point cloud frames. For example, you can use this task type to // ask workers to track the movement of vehicles across multiple point cloud // frames. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud semantic segmentation</b> - Use this task // type when you want workers to create a point-level semantic segmentation masks // by painting objects in a 3D point cloud using different colors where each color // is assigned to one of the classes you specify.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Use the following ARNs for Label Verification and // Adjustment Jobs</b> </p> <p>Use label verification and adjustment jobs to review // and adjust labels. To learn more, see <a // href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html">Verify // and Adjust Labels </a>.</p> <p> <b>Semantic segmentation adjustment</b> - Treats // each pixel in an image as a multi-class classification and treats pixel adjusted // annotations from workers as "votes" for the correct label.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Semantic segmentation verification</b> - Uses a variant // of the Expectation Maximization approach to estimate the true class of // verification judgment for semantic segmentation labels based on annotations from // individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Bounding box verification</b> - Uses a variant of the // Expectation Maximization approach to estimate the true class of verification // judgement for bounding box labels based on annotations from individual // workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox</code> // </p> </li> </ul> <p> <b>Bounding box adjustment</b> - Finds the most similar // boxes from different workers based on the Jaccard index of the adjusted // annotations.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox</code> // </p> </li> </ul> <p> <b>Video Frame Object Detection Adjustment</b> - Use this // task type when you want workers to adjust bounding boxes that workers have added // to video frames to classify and localize objects in a sequence of video // frames.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection</code> // </p> </li> </ul> <p> <b>Video Frame Object Tracking Adjustment</b> - Use this // task type when you want workers to adjust bounding boxes that workers have added // to video frames to track object movement across a sequence of video frames.</p> // <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud object detection adjustment</b> - Use // this task type when you want workers to adjust 3D cuboids around objects in a 3D // point cloud. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection</code> // </p> </li> </ul> <p> <b>3D point cloud object tracking adjustment</b> - Use this // task type when you want workers to adjust 3D cuboids around objects that appear // in a sequence of 3D point cloud frames.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud semantic segmentation adjustment</b> - // Use this task type when you want workers to adjust a point-level semantic // segmentation masks using a paint tool.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> </ul> // // This member is required. AnnotationConsolidationLambdaArn *string }
Configures how labels are consolidated across human workers and processes output data.
type AppDetails ¶
type AppDetails struct { // The name of the app. AppName *string // The creation time. CreationTime *time.Time // The domain ID. DomainId *string // The type of app. AppType AppType // The user profile name. UserProfileName *string // The status. Status AppStatus }
The app's details.
type AppInstanceType ¶
type AppInstanceType string
const ( AppInstanceTypeSystem AppInstanceType = "system" AppInstanceTypeMl_t3_micro AppInstanceType = "ml.t3.micro" AppInstanceTypeMl_t3_small AppInstanceType = "ml.t3.small" AppInstanceTypeMl_t3_medium AppInstanceType = "ml.t3.medium" AppInstanceTypeMl_t3_large AppInstanceType = "ml.t3.large" AppInstanceTypeMl_t3_xlarge AppInstanceType = "ml.t3.xlarge" AppInstanceTypeMl_t3_2xlarge AppInstanceType = "ml.t3.2xlarge" AppInstanceTypeMl_m5_large AppInstanceType = "ml.m5.large" AppInstanceTypeMl_m5_xlarge AppInstanceType = "ml.m5.xlarge" AppInstanceTypeMl_m5_2xlarge AppInstanceType = "ml.m5.2xlarge" AppInstanceTypeMl_m5_4xlarge AppInstanceType = "ml.m5.4xlarge" AppInstanceTypeMl_m5_8xlarge AppInstanceType = "ml.m5.8xlarge" AppInstanceTypeMl_m5_12xlarge AppInstanceType = "ml.m5.12xlarge" AppInstanceTypeMl_m5_16xlarge AppInstanceType = "ml.m5.16xlarge" AppInstanceTypeMl_m5_24xlarge AppInstanceType = "ml.m5.24xlarge" AppInstanceTypeMl_c5_large AppInstanceType = "ml.c5.large" AppInstanceTypeMl_c5_xlarge AppInstanceType = "ml.c5.xlarge" AppInstanceTypeMl_c5_2xlarge AppInstanceType = "ml.c5.2xlarge" AppInstanceTypeMl_c5_4xlarge AppInstanceType = "ml.c5.4xlarge" AppInstanceTypeMl_c5_9xlarge AppInstanceType = "ml.c5.9xlarge" AppInstanceTypeMl_c5_12xlarge AppInstanceType = "ml.c5.12xlarge" AppInstanceTypeMl_c5_18xlarge AppInstanceType = "ml.c5.18xlarge" AppInstanceTypeMl_c5_24xlarge AppInstanceType = "ml.c5.24xlarge" AppInstanceTypeMl_p3_2xlarge AppInstanceType = "ml.p3.2xlarge" AppInstanceTypeMl_p3_8xlarge AppInstanceType = "ml.p3.8xlarge" AppInstanceTypeMl_p3_16xlarge AppInstanceType = "ml.p3.16xlarge" AppInstanceTypeMl_g4dn_xlarge AppInstanceType = "ml.g4dn.xlarge" AppInstanceTypeMl_g4dn_2xlarge AppInstanceType = "ml.g4dn.2xlarge" AppInstanceTypeMl_g4dn_4xlarge AppInstanceType = "ml.g4dn.4xlarge" AppInstanceTypeMl_g4dn_8xlarge AppInstanceType = "ml.g4dn.8xlarge" AppInstanceTypeMl_g4dn_12xlarge AppInstanceType = "ml.g4dn.12xlarge" AppInstanceTypeMl_g4dn_16xlarge AppInstanceType = "ml.g4dn.16xlarge" )
Enum values for AppInstanceType
type AppSortKey ¶
type AppSortKey string
const ( AppSortKeyCreationtime AppSortKey = "CreationTime" )
Enum values for AppSortKey
type AppSpecification ¶
type AppSpecification struct { // The arguments for a container used to run a processing job. ContainerArguments []*string // The container image to be run by the processing job. // // This member is required. ImageUri *string // The entrypoint for a container used to run a processing job. ContainerEntrypoint []*string }
Configuration to run a processing job in a specified container image.
type AppStatus ¶
type AppStatus string
const ( AppStatusDeleted AppStatus = "Deleted" AppStatusDeleting AppStatus = "Deleting" AppStatusFailed AppStatus = "Failed" AppStatusInservice AppStatus = "InService" AppStatusPending AppStatus = "Pending" )
Enum values for AppStatus
type AppType ¶
type AppType string
const ( AppTypeJupyterserver AppType = "JupyterServer" AppTypeKernelgateway AppType = "KernelGateway" AppTypeTensorboard AppType = "TensorBoard" )
Enum values for AppType
type AssemblyType ¶
type AssemblyType string
const ( AssemblyTypeNone AssemblyType = "None" AssemblyTypeLine AssemblyType = "Line" )
Enum values for AssemblyType
type AuthMode ¶
type AuthMode string
Enum values for AuthMode
type AutoMLCandidate ¶
type AutoMLCandidate struct { // The candidate name. // // This member is required. CandidateName *string // The failure reason. FailureReason *string // The candidate's status. // // This member is required. CandidateStatus CandidateStatus // The objective status. // // This member is required. ObjectiveStatus ObjectiveStatus // The candidate result from a job. FinalAutoMLJobObjectiveMetric *FinalAutoMLJobObjectiveMetric // The end time. EndTime *time.Time // The inference containers. InferenceContainers []*AutoMLContainerDefinition // The creation time. // // This member is required. CreationTime *time.Time // The last modified time. // // This member is required. LastModifiedTime *time.Time // The candidate's steps. // // This member is required. CandidateSteps []*AutoMLCandidateStep }
An AutoPilot job will return recommendations, or candidates. Each candidate has futher details about the steps involed, and the status.
type AutoMLCandidateStep ¶
type AutoMLCandidateStep struct { // The name for the Candidate's step. // // This member is required. CandidateStepName *string // Whether the Candidate is at the transform, training, or processing step. // // This member is required. CandidateStepType CandidateStepType // The ARN for the Candidate's step. // // This member is required. CandidateStepArn *string }
Information about the steps for a Candidate, and what step it is working on.
type AutoMLChannel ¶
type AutoMLChannel struct { // The name of the target variable in supervised learning, a.k.a. 'y'. // // This member is required. TargetAttributeName *string // The data source. // // This member is required. DataSource *AutoMLDataSource // You can use Gzip or None. The default value is None. CompressionType CompressionType }
Similar to Channel. A channel is a named input source that training algorithms can consume. Refer to Channel for detailed descriptions.
type AutoMLContainerDefinition ¶
type AutoMLContainerDefinition struct { // Environment variables to set in the container. Refer to ContainerDefinition for // more details. Environment map[string]*string // The location of the model artifacts. Refer to ContainerDefinition for more // details. // // This member is required. ModelDataUrl *string // The ECR path of the container. Refer to ContainerDefinition for more details. // // This member is required. Image *string }
A list of container definitions that describe the different containers that make up one AutoML candidate. Refer to ContainerDefinition for more details.
type AutoMLDataSource ¶
type AutoMLDataSource struct { // The Amazon S3 location of the input data. The input data must be in CSV format // and contain at least 1000 rows. // // This member is required. S3DataSource *AutoMLS3DataSource }
The data source for the AutoPilot job.
type AutoMLJobArtifacts ¶
type AutoMLJobArtifacts struct { // The URL to the notebook location. DataExplorationNotebookLocation *string // The URL to the notebook location. CandidateDefinitionNotebookLocation *string }
Artifacts that are generation during a job.
type AutoMLJobCompletionCriteria ¶
type AutoMLJobCompletionCriteria struct { // The maximum time, in seconds, a job is allowed to run. MaxRuntimePerTrainingJobInSeconds *int32 // The maximum number of times a training job is allowed to run. MaxCandidates *int32 // The maximum time, in seconds, an AutoML job is allowed to wait for a trial to // complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds. MaxAutoMLJobRuntimeInSeconds *int32 }
How long a job is allowed to run, or how many candidates a job is allowed to generate.
type AutoMLJobConfig ¶
type AutoMLJobConfig struct { // How long a job is allowed to run, or how many candidates a job is allowed to // generate. CompletionCriteria *AutoMLJobCompletionCriteria // Security configuration for traffic encryption or Amazon VPC settings. SecurityConfig *AutoMLSecurityConfig }
A collection of settings used for a job.
type AutoMLJobObjective ¶
type AutoMLJobObjective struct { // The name of the metric. // // This member is required. MetricName AutoMLMetricEnum }
Applies a metric to minimize or maximize for the job's objective.
type AutoMLJobObjectiveType ¶
type AutoMLJobObjectiveType string
const ( AutoMLJobObjectiveTypeMaximize AutoMLJobObjectiveType = "Maximize" AutoMLJobObjectiveTypeMinimize AutoMLJobObjectiveType = "Minimize" )
Enum values for AutoMLJobObjectiveType
type AutoMLJobSecondaryStatus ¶
type AutoMLJobSecondaryStatus string
const ( AutoMLJobSecondaryStatusStarting AutoMLJobSecondaryStatus = "Starting" AutoMLJobSecondaryStatusAnalyzing_data AutoMLJobSecondaryStatus = "AnalyzingData" AutoMLJobSecondaryStatusFeature_engineering AutoMLJobSecondaryStatus = "FeatureEngineering" AutoMLJobSecondaryStatusModel_tuning AutoMLJobSecondaryStatus = "ModelTuning" AutoMLJobSecondaryStatusMax_candidates_reached AutoMLJobSecondaryStatus = "MaxCandidatesReached" AutoMLJobSecondaryStatusFailed AutoMLJobSecondaryStatus = "Failed" AutoMLJobSecondaryStatusStopped AutoMLJobSecondaryStatus = "Stopped" AutoMLJobSecondaryStatusMax_auto_ml_job_runtime_reached AutoMLJobSecondaryStatus = "MaxAutoMLJobRuntimeReached" AutoMLJobSecondaryStatusStopping AutoMLJobSecondaryStatus = "Stopping" AutoMLJobSecondaryStatusCandidate_definitions_generated AutoMLJobSecondaryStatus = "CandidateDefinitionsGenerated" )
Enum values for AutoMLJobSecondaryStatus
type AutoMLJobStatus ¶
type AutoMLJobStatus string
const ( AutoMLJobStatusCompleted AutoMLJobStatus = "Completed" AutoMLJobStatusIn_progress AutoMLJobStatus = "InProgress" AutoMLJobStatusFailed AutoMLJobStatus = "Failed" AutoMLJobStatusStopped AutoMLJobStatus = "Stopped" AutoMLJobStatusStopping AutoMLJobStatus = "Stopping" )
Enum values for AutoMLJobStatus
type AutoMLJobSummary ¶
type AutoMLJobSummary struct { // The ARN of the job. // // This member is required. AutoMLJobArn *string // The failure reason. FailureReason *string // The name of the object you are requesting. // // This member is required. AutoMLJobName *string // The end time. EndTime *time.Time // When the job was created. // // This member is required. CreationTime *time.Time // When the job was last modified. // // This member is required. LastModifiedTime *time.Time // The job's secondary status. // // This member is required. AutoMLJobSecondaryStatus AutoMLJobSecondaryStatus // The job's status. // // This member is required. AutoMLJobStatus AutoMLJobStatus }
Provides a summary about a job.
type AutoMLMetricEnum ¶
type AutoMLMetricEnum string
const ( AutoMLMetricEnumAccuracy AutoMLMetricEnum = "Accuracy" AutoMLMetricEnumMse AutoMLMetricEnum = "MSE" AutoMLMetricEnumF1 AutoMLMetricEnum = "F1" AutoMLMetricEnumF1_macro AutoMLMetricEnum = "F1macro" )
Enum values for AutoMLMetricEnum
type AutoMLOutputDataConfig ¶
type AutoMLOutputDataConfig struct { // The AWS KMS encryption key ID. KmsKeyId *string // The Amazon S3 output path. Must be 128 characters or less. // // This member is required. S3OutputPath *string }
The output data configuration.
type AutoMLS3DataSource ¶
type AutoMLS3DataSource struct { // The data type. // // This member is required. S3DataType AutoMLS3DataType // The URL to the Amazon S3 data source. // // This member is required. S3Uri *string }
The Amazon S3 data source.
type AutoMLS3DataType ¶
type AutoMLS3DataType string
const ( AutoMLS3DataTypeManifest_file AutoMLS3DataType = "ManifestFile" AutoMLS3DataTypeS3_prefix AutoMLS3DataType = "S3Prefix" )
Enum values for AutoMLS3DataType
type AutoMLSecurityConfig ¶
type AutoMLSecurityConfig struct { // VPC configuration. VpcConfig *VpcConfig // Whether to use traffic encryption between the container layers. EnableInterContainerTrafficEncryption *bool // The key used to encrypt stored data. VolumeKmsKeyId *string }
Security options.
type AutoMLSortBy ¶
type AutoMLSortBy string
const ( AutoMLSortByName AutoMLSortBy = "Name" AutoMLSortByCreation_time AutoMLSortBy = "CreationTime" AutoMLSortByStatus AutoMLSortBy = "Status" )
Enum values for AutoMLSortBy
type AutoMLSortOrder ¶
type AutoMLSortOrder string
const ( AutoMLSortOrderAscending AutoMLSortOrder = "Ascending" AutoMLSortOrderDescending AutoMLSortOrder = "Descending" )
Enum values for AutoMLSortOrder
type AwsManagedHumanLoopRequestSource ¶
type AwsManagedHumanLoopRequestSource string
const ( AwsManagedHumanLoopRequestSourceRekognition_detect_moderation_labels_image_v3 AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3" AwsManagedHumanLoopRequestSourceTextract_analyze_document_forms_v1 AwsManagedHumanLoopRequestSource = "AWS/Textract/AnalyzeDocument/Forms/V1" )
Enum values for AwsManagedHumanLoopRequestSource
type BatchStrategy ¶
type BatchStrategy string
const ( BatchStrategyMulti_record BatchStrategy = "MultiRecord" BatchStrategySingle_record BatchStrategy = "SingleRecord" )
Enum values for BatchStrategy
type BooleanOperator ¶
type BooleanOperator string
const ( BooleanOperatorAnd BooleanOperator = "And" BooleanOperatorOr BooleanOperator = "Or" )
Enum values for BooleanOperator
type CandidateSortBy ¶
type CandidateSortBy string
const ( CandidateSortByCreationtime CandidateSortBy = "CreationTime" CandidateSortByStatus CandidateSortBy = "Status" CandidateSortByFinalobjectivemetricvalue CandidateSortBy = "FinalObjectiveMetricValue" )
Enum values for CandidateSortBy
type CandidateStatus ¶
type CandidateStatus string
const ( CandidateStatusCompleted CandidateStatus = "Completed" CandidateStatusIn_progress CandidateStatus = "InProgress" CandidateStatusFailed CandidateStatus = "Failed" CandidateStatusStopped CandidateStatus = "Stopped" CandidateStatusStopping CandidateStatus = "Stopping" )
Enum values for CandidateStatus
type CandidateStepType ¶
type CandidateStepType string
const ( CandidateStepTypeTraining CandidateStepType = "AWS::SageMaker::TrainingJob" CandidateStepTypeTransform CandidateStepType = "AWS::SageMaker::TransformJob" CandidateStepTypeProcessing CandidateStepType = "AWS::SageMaker::ProcessingJob" )
Enum values for CandidateStepType
type CaptureContentTypeHeader ¶
type CaptureMode ¶
type CaptureMode string
const ( CaptureModeInput CaptureMode = "Input" CaptureModeOutput CaptureMode = "Output" )
Enum values for CaptureMode
type CaptureOption ¶
type CaptureOption struct { // // // This member is required. CaptureMode CaptureMode }
type CaptureStatus ¶
type CaptureStatus string
const ( CaptureStatusStarted CaptureStatus = "Started" CaptureStatusStopped CaptureStatus = "Stopped" )
Enum values for CaptureStatus
type CategoricalParameterRange ¶
type CategoricalParameterRange struct { // A list of the categories for the hyperparameter. // // This member is required. Values []*string // The name of the categorical hyperparameter to tune. // // This member is required. Name *string }
A list of categorical hyperparameters to tune.
type CategoricalParameterRangeSpecification ¶
type CategoricalParameterRangeSpecification struct { // The allowed categories for the hyperparameter. // // This member is required. Values []*string }
Defines the possible values for a categorical hyperparameter.
type Channel ¶
type Channel struct { // The MIME type of the data. ContentType *string // (Optional) The input mode to use for the data channel in a training job. If you // don't set a value for InputMode, Amazon SageMaker uses the value set for // TrainingInputMode. Use this parameter to override the TrainingInputMode setting // in a AlgorithmSpecification () request when you have a channel that needs a // different input mode from the training job's general setting. To download the // data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML // storage volume, and mount the directory to a Docker volume, use File input mode. // To stream data directly from Amazon S3 to the container, choose Pipe input mode. // To use a model for incremental training, choose File input model. InputMode TrainingInputMode // A configuration for a shuffle option for input data in a channel. If you use // S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. // If you use ManifestFile, the order of the S3 object references in the // ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the // JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is // determined using the Seed value. For Pipe input mode, shuffling is done at the // start of every epoch. With large datasets this ensures that the order of the // training data is different for each epoch, it helps reduce bias and possible // overfitting. In a multi-node training job when ShuffleConfig is combined with // S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so // that the content sent to a particular node on the first epoch might be sent to a // different node on the second epoch. ShuffleConfig *ShuffleConfig // Specify RecordIO as the value when input data is in raw format but the training // algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps // each individual S3 object in a RecordIO record. If the input data is already in // RecordIO format, you don't need to set this attribute. For more information, see // Create a Dataset Using RecordIO // (https://mxnet.apache.org/api/architecture/note_data_loading#data-format). In // File mode, leave this field unset or set it to None. RecordWrapperType RecordWrapper // The name of the channel. // // This member is required. ChannelName *string // If training data is compressed, the compression type. The default value is None. // CompressionType is used only in Pipe input mode. In File mode, leave this field // unset or set it to None. CompressionType CompressionType // The location of the channel data. // // This member is required. DataSource *DataSource }
A channel is a named input source that training algorithms can consume.
type ChannelSpecification ¶
type ChannelSpecification struct { // The supported MIME types for the data. // // This member is required. SupportedContentTypes []*string // Indicates whether the channel is required by the algorithm. IsRequired *bool // The allowed compression types, if data compression is used. SupportedCompressionTypes []CompressionType // A brief description of the channel. Description *string // The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker // copies the data from the input source onto the local Amazon Elastic Block Store // (Amazon EBS) volumes before starting your training algorithm. This is the most // commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from // the source directly to your algorithm without using the EBS volume. // // This member is required. SupportedInputModes []TrainingInputMode // The name of the channel. // // This member is required. Name *string }
Defines a named input source, called a channel, to be used by an algorithm.
type CheckpointConfig ¶
type CheckpointConfig struct { // (Optional) The local directory where checkpoints are written. The default // directory is /opt/ml/checkpoints/. LocalPath *string // Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For // example, s3://bucket-name/key-name-prefix. // // This member is required. S3Uri *string }
Contains information about the output location for managed spot training checkpoint data.
type CodeRepositorySortBy ¶
type CodeRepositorySortBy string
const ( CodeRepositorySortByName CodeRepositorySortBy = "Name" CodeRepositorySortByCreation_time CodeRepositorySortBy = "CreationTime" CodeRepositorySortByLast_modified_time CodeRepositorySortBy = "LastModifiedTime" )
Enum values for CodeRepositorySortBy
type CodeRepositorySortOrder ¶
type CodeRepositorySortOrder string
const ( CodeRepositorySortOrderAscending CodeRepositorySortOrder = "Ascending" CodeRepositorySortOrderDescending CodeRepositorySortOrder = "Descending" )
Enum values for CodeRepositorySortOrder
type CodeRepositorySummary ¶
type CodeRepositorySummary struct { // The Amazon Resource Name (ARN) of the Git repository. // // This member is required. CodeRepositoryArn *string // The date and time that the Git repository was created. // // This member is required. CreationTime *time.Time // The date and time that the Git repository was last modified. // // This member is required. LastModifiedTime *time.Time // Configuration details for the Git repository, including the URL where it is // located and the ARN of the AWS Secrets Manager secret that contains the // credentials used to access the repository. GitConfig *GitConfig // The name of the Git repository. // // This member is required. CodeRepositoryName *string }
Specifies summary information about a Git repository.
type CognitoConfig ¶
type CognitoConfig struct { // The client ID for your Amazon Cognito user pool. // // This member is required. ClientId *string // A user pool // (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html) // is a user directory in Amazon Cognito. With a user pool, your users can sign in // to your web or mobile app through Amazon Cognito. Your users can also sign in // through social identity providers like Google, Facebook, Amazon, or Apple, and // through SAML identity providers. // // This member is required. UserPool *string }
Use this parameter to configure your Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html).
type CognitoMemberDefinition ¶
type CognitoMemberDefinition struct { // An identifier for an application client. You must create the app client ID using // Amazon Cognito. // // This member is required. ClientId *string // An identifier for a user pool. The user pool must be in the same region as the // service that you are calling. // // This member is required. UserPool *string // An identifier for a user group. // // This member is required. UserGroup *string }
Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.
type CollectionConfiguration ¶
type CollectionConfiguration struct { // Parameter values for the tensor collection. The allowed parameters are "name", // "include_regex", "reduction_config", "save_config", "tensor_names", and // "save_histogram". CollectionParameters map[string]*string // The name of the tensor collection. The name must be unique relative to other // rule configuration names. CollectionName *string }
Configuration information for tensor collections.
type CompilationJobStatus ¶
type CompilationJobStatus string
const ( CompilationJobStatusInprogress CompilationJobStatus = "INPROGRESS" CompilationJobStatusCompleted CompilationJobStatus = "COMPLETED" CompilationJobStatusFailed CompilationJobStatus = "FAILED" CompilationJobStatusStarting CompilationJobStatus = "STARTING" CompilationJobStatusStopping CompilationJobStatus = "STOPPING" CompilationJobStatusStopped CompilationJobStatus = "STOPPED" )
Enum values for CompilationJobStatus
type CompilationJobSummary ¶
type CompilationJobSummary struct { // The type of OS that the model will run on after the compilation job has // completed. CompilationTargetPlatformOs TargetPlatformOs // The type of device that the model will run on after the compilation job has // completed. CompilationTargetDevice TargetDevice // The type of architecture that the model will run on after the compilation job // has completed. CompilationTargetPlatformArch TargetPlatformArch // The time when the model compilation job completed. CompilationEndTime *time.Time // The type of accelerator that the model will run on after the compilation job has // completed. CompilationTargetPlatformAccelerator TargetPlatformAccelerator // The time when the model compilation job was created. // // This member is required. CreationTime *time.Time // The time when the model compilation job was last modified. LastModifiedTime *time.Time // The time when the model compilation job started. CompilationStartTime *time.Time // The Amazon Resource Name (ARN) of the model compilation job. // // This member is required. CompilationJobArn *string // The name of the model compilation job that you want a summary for. // // This member is required. CompilationJobName *string // The status of the model compilation job. // // This member is required. CompilationJobStatus CompilationJobStatus }
A summary of a model compilation job.
type CompressionType ¶
type CompressionType string
const ( CompressionTypeNone CompressionType = "None" CompressionTypeGzip CompressionType = "Gzip" )
Enum values for CompressionType
type ConflictException ¶
type ConflictException struct { Message *string }
There was a conflict when you attempted to modify an experiment, trial, or trial component.
func (*ConflictException) Error ¶
func (e *ConflictException) Error() string
func (*ConflictException) ErrorCode ¶
func (e *ConflictException) ErrorCode() string
func (*ConflictException) ErrorFault ¶
func (e *ConflictException) ErrorFault() smithy.ErrorFault
func (*ConflictException) ErrorMessage ¶
func (e *ConflictException) ErrorMessage() string
type ContainerDefinition ¶
type ContainerDefinition struct { // The environment variables to set in the Docker container. Each key and value in // the Environment string to string map can have length of up to 1024. We support // up to 16 entries in the map. Environment map[string]*string // The name or Amazon Resource Name (ARN) of the model package to use to create the // model. ModelPackageName *string // Whether the container hosts a single model or multiple models. Mode ContainerMode // This parameter is ignored for models that contain only a PrimaryContainer. When // a ContainerDefinition is part of an inference pipeline, the value of the // parameter uniquely identifies the container for the purposes of logging and // metrics. For information, see Use Logs and Metrics to Monitor an Inference // Pipeline // (https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html). // If you don't specify a value for this parameter for a ContainerDefinition that // is part of an inference pipeline, a unique name is automatically assigned based // on the position of the ContainerDefinition in the pipeline. If you specify a // value for the ContainerHostName for any ContainerDefinition that is part of an // inference pipeline, you must specify a value for the ContainerHostName parameter // of every ContainerDefinition in that pipeline. ContainerHostname *string // The Amazon EC2 Container Registry (Amazon ECR) path where inference code is // stored. If you are using your own custom algorithm instead of an algorithm // provided by Amazon SageMaker, the inference code must meet Amazon SageMaker // requirements. Amazon SageMaker supports both registry/repository[:tag] and // registry/repository[@digest] image path formats. For more information, see Using // Your Own Algorithms with Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html) Image *string // The S3 path where the model artifacts, which result from model training, are // stored. This path must point to a single gzip compressed tar archive (.tar.gz // suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but // not if you use your own algorithms. For more information on built-in algorithms, // see Common Parameters // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html). // If you provide a value for this parameter, Amazon SageMaker uses AWS Security // Token Service to download model artifacts from the S3 path you provide. AWS STS // is activated in your IAM user account by default. If you previously deactivated // AWS STS for a region, you need to reactivate AWS STS for that region. For more // information, see Activating and Deactivating AWS STS in an AWS Region // (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html) // in the AWS Identity and Access Management User Guide. If you use a built-in // algorithm to create a model, Amazon SageMaker requires that you provide a S3 // path to the model artifacts in ModelDataUrl. ModelDataUrl *string }
Describes the container, as part of model definition.
type ContainerMode ¶
type ContainerMode string
const ( ContainerModeSingle_model ContainerMode = "SingleModel" ContainerModeMulti_model ContainerMode = "MultiModel" )
Enum values for ContainerMode
type ContentClassifier ¶
type ContentClassifier string
const ( ContentClassifierFree_of_personally_identifiable_information ContentClassifier = "FreeOfPersonallyIdentifiableInformation" ContentClassifierFree_of_adult_content ContentClassifier = "FreeOfAdultContent" )
Enum values for ContentClassifier
type ContinuousParameterRange ¶
type ContinuousParameterRange struct { // The maximum value for the hyperparameter. The tuning job uses floating-point // values between MinValue value and this value for tuning. // // This member is required. MaxValue *string // The scale that hyperparameter tuning uses to search the hyperparameter range. // For information about choosing a hyperparameter scale, see Hyperparameter // Scaling // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type). // One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses // the best scale for the hyperparameter. Linear Hyperparameter tuning searches the // values in the hyperparameter range by using a linear scale. Logarithmic // Hyperparameter tuning searches the values in the hyperparameter range by using a // logarithmic scale. Logarithmic scaling works only for ranges that have only // values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the // values in the hyperparameter range by using a reverse logarithmic scale. Reverse // logarithmic scaling works only for ranges that are entirely within the range // 0<=x<1.0. ScalingType HyperParameterScalingType // The name of the continuous hyperparameter to tune. // // This member is required. Name *string // The minimum value for the hyperparameter. The tuning job uses floating-point // values between this value and MaxValuefor tuning. // // This member is required. MinValue *string }
A list of continuous hyperparameters to tune.
type ContinuousParameterRangeSpecification ¶
type ContinuousParameterRangeSpecification struct { // The minimum floating-point value allowed. // // This member is required. MinValue *string // The maximum floating-point value allowed. // // This member is required. MaxValue *string }
Defines the possible values for a continuous hyperparameter.
type DataCaptureConfig ¶
type DataCaptureConfig struct { // EnableCapture *bool // KmsKeyId *string // // // This member is required. DestinationS3Uri *string // // // This member is required. InitialSamplingPercentage *int32 // // // This member is required. CaptureOptions []*CaptureOption // CaptureContentTypeHeader *CaptureContentTypeHeader }
type DataCaptureConfigSummary ¶
type DataCaptureConfigSummary struct { // // // This member is required. DestinationS3Uri *string // // // This member is required. CaptureStatus CaptureStatus // // // This member is required. KmsKeyId *string // // // This member is required. EnableCapture *bool // // // This member is required. CurrentSamplingPercentage *int32 }
type DataProcessing ¶
type DataProcessing struct { // A JSONPath // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators) // expression used to select a portion of the input data to pass to the algorithm. // Use the InputFilter parameter to exclude fields, such as an ID column, from the // input. If you want Amazon SageMaker to pass the entire input dataset to the // algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features" InputFilter *string // Specifies the source of the data to join with the transformed data. The valid // values are None and Input. The default value is None, which specifies not to // join the input with the transformed data. If you want the batch transform job to // join the original input data with the transformed data, set JoinSource to Input. // <p>For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds // the transformed data to the input JSON object in an attribute called // <code>SageMakerOutput</code>. The joined result for JSON must be a key-value // pair object. If the input is not a key-value pair object, Amazon SageMaker // creates a new JSON file. In the new JSON file, and the input data is stored // under the <code>SageMakerInput</code> key and the results are stored in // <code>SageMakerOutput</code>.</p> <p>For CSV files, Amazon SageMaker combines // the transformed data with the input data at the end of the input data and stores // it in the output file. The joined data has the joined input data followed by the // transformed data and the output is a CSV file. </p> JoinSource JoinSource // A JSONPath // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators) // expression used to select a portion of the joined dataset to save in the output // file for a batch transform job. If you want Amazon SageMaker to store the entire // input dataset in the output file, leave the default value, $. If you specify // indexes that aren't within the dimension size of the joined dataset, you get an // error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']" OutputFilter *string }
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html).
type DataSource ¶
type DataSource struct { // The S3 location of the data source that is associated with a channel. S3DataSource *S3DataSource // The file system that is associated with a channel. FileSystemDataSource *FileSystemDataSource }
Describes the location of the channel data.
type DebugHookConfig ¶
type DebugHookConfig struct { // Configuration information for tensor collections. CollectionConfigurations []*CollectionConfiguration // Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/. LocalPath *string // Configuration information for the debug hook parameters. HookParameters map[string]*string // Path to Amazon S3 storage location for tensors. // // This member is required. S3OutputPath *string }
Configuration information for the debug hook parameters, collection configuration, and storage paths.
type DebugRuleConfiguration ¶
type DebugRuleConfiguration struct { // Path to Amazon S3 storage location for rules. S3OutputPath *string // The instance type to deploy for a training job. InstanceType ProcessingInstanceType // The Amazon Elastic Container (ECR) Image for the managed rule evaluation. // // This member is required. RuleEvaluatorImage *string // The name of the rule configuration. It must be unique relative to other rule // configuration names. // // This member is required. RuleConfigurationName *string // Runtime configuration for rule container. RuleParameters map[string]*string // The size, in GB, of the ML storage volume attached to the processing instance. VolumeSizeInGB *int32 // Path to local storage location for output of rules. Defaults to // /opt/ml/processing/output/rule/. LocalPath *string }
Configuration information for debugging rules.
type DebugRuleEvaluationStatus ¶
type DebugRuleEvaluationStatus struct { // Timestamp when the rule evaluation status was last modified. LastModifiedTime *time.Time // Details from the rule evaluation. StatusDetails *string // The Amazon Resource Name (ARN) of the rule evaluation job. RuleEvaluationJobArn *string // Status of the rule evaluation. RuleEvaluationStatus RuleEvaluationStatus // The name of the rule configuration RuleConfigurationName *string }
Information about the status of the rule evaluation.
type DeployedImage ¶
type DeployedImage struct { // The date and time when the image path for the model resolved to the // ResolvedImage ResolutionTime *time.Time // The specific digest path of the image hosted in this ProductionVariant. ResolvedImage *string // The image path you specified when you created the model. SpecifiedImage *string }
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant (). If you used the registry/repository[:tag] form to specify the image path of the primary container when you created the model hosted in this ProductionVariant, the path resolves to a path of the form registry/repository[@digest]. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html) in the Amazon ECR User Guide.
type DesiredWeightAndCapacity ¶
type DesiredWeightAndCapacity struct { // The name of the variant to update. // // This member is required. VariantName *string // The variant's capacity. DesiredInstanceCount *int32 // The variant's weight. DesiredWeight *float32 }
Specifies weight and capacity values for a production variant.
type DetailedAlgorithmStatus ¶
type DetailedAlgorithmStatus string
const ( DetailedAlgorithmStatusNot_started DetailedAlgorithmStatus = "NotStarted" DetailedAlgorithmStatusIn_progress DetailedAlgorithmStatus = "InProgress" DetailedAlgorithmStatusCompleted DetailedAlgorithmStatus = "Completed" DetailedAlgorithmStatusFailed DetailedAlgorithmStatus = "Failed" )
Enum values for DetailedAlgorithmStatus
type DetailedModelPackageStatus ¶
type DetailedModelPackageStatus string
const ( DetailedModelPackageStatusNot_started DetailedModelPackageStatus = "NotStarted" DetailedModelPackageStatusIn_progress DetailedModelPackageStatus = "InProgress" DetailedModelPackageStatusCompleted DetailedModelPackageStatus = "Completed" DetailedModelPackageStatusFailed DetailedModelPackageStatus = "Failed" )
Enum values for DetailedModelPackageStatus
type DirectInternetAccess ¶
type DirectInternetAccess string
const ( DirectInternetAccessEnabled DirectInternetAccess = "Enabled" DirectInternetAccessDisabled DirectInternetAccess = "Disabled" )
Enum values for DirectInternetAccess
type DomainDetails ¶
type DomainDetails struct { // The domain name. DomainName *string // The domain ID. DomainId *string // The status. Status DomainStatus // The creation time. CreationTime *time.Time // The last modified time. LastModifiedTime *time.Time // The domain's URL. Url *string // The domain's Amazon Resource Name (ARN). DomainArn *string }
The domain's details.
type DomainStatus ¶
type DomainStatus string
const ( DomainStatusDeleting DomainStatus = "Deleting" DomainStatusFailed DomainStatus = "Failed" DomainStatusInservice DomainStatus = "InService" DomainStatusPending DomainStatus = "Pending" )
Enum values for DomainStatus
type EndpointConfigSortKey ¶
type EndpointConfigSortKey string
const ( EndpointConfigSortKeyName EndpointConfigSortKey = "Name" EndpointConfigSortKeyCreationtime EndpointConfigSortKey = "CreationTime" )
Enum values for EndpointConfigSortKey
type EndpointConfigSummary ¶
type EndpointConfigSummary struct { // The name of the endpoint configuration. // // This member is required. EndpointConfigName *string // A timestamp that shows when the endpoint configuration was created. // // This member is required. CreationTime *time.Time // The Amazon Resource Name (ARN) of the endpoint configuration. // // This member is required. EndpointConfigArn *string }
Provides summary information for an endpoint configuration.
type EndpointInput ¶
type EndpointInput struct { // An endpoint in customer's account which has enabled DataCaptureConfig enabled. // // This member is required. EndpointName *string // Whether the Pipe or File is used as the input mode for transfering data for the // monitoring job. Pipe mode is recommended for large datasets. File mode is useful // for small files that fit in memory. Defaults to File. S3InputMode ProcessingS3InputMode // Whether input data distributed in Amazon S3 is fully replicated or sharded by an // S3 key. Defauts to FullyReplicated S3DataDistributionType ProcessingS3DataDistributionType // Path to the filesystem where the endpoint data is available to the container. // // This member is required. LocalPath *string }
Input object for the endpoint
type EndpointSortKey ¶
type EndpointSortKey string
const ( EndpointSortKeyName EndpointSortKey = "Name" EndpointSortKeyCreationtime EndpointSortKey = "CreationTime" EndpointSortKeyStatus EndpointSortKey = "Status" )
Enum values for EndpointSortKey
type EndpointStatus ¶
type EndpointStatus string
const ( EndpointStatusOut_of_service EndpointStatus = "OutOfService" EndpointStatusCreating EndpointStatus = "Creating" EndpointStatusUpdating EndpointStatus = "Updating" EndpointStatusSystem_updating EndpointStatus = "SystemUpdating" EndpointStatusRolling_back EndpointStatus = "RollingBack" EndpointStatusIn_service EndpointStatus = "InService" EndpointStatusDeleting EndpointStatus = "Deleting" EndpointStatusFailed EndpointStatus = "Failed" )
Enum values for EndpointStatus
type EndpointSummary ¶
type EndpointSummary struct { // The name of the endpoint. // // This member is required. EndpointName *string // The status of the endpoint. // // * OutOfService: Endpoint is not available to // take incoming requests. // // * Creating: CreateEndpoint () is executing. // // * // Updating: UpdateEndpoint () or UpdateEndpointWeightsAndCapacities () is // executing. // // * SystemUpdating: Endpoint is undergoing maintenance and cannot // be updated or deleted or re-scaled until it has completed. This maintenance // operation does not change any customer-specified values such as VPC config, KMS // encryption, model, instance type, or instance count. // // * RollingBack: // Endpoint fails to scale up or down or change its variant weight and is in the // process of rolling back to its previous configuration. Once the rollback // completes, endpoint returns to an InService status. This transitional status // only applies to an endpoint that has autoscaling enabled and is undergoing // variant weight or capacity changes as part of an // UpdateEndpointWeightsAndCapacities () call or when the // UpdateEndpointWeightsAndCapacities () operation is called explicitly. // // * // InService: Endpoint is available to process incoming requests. // // * Deleting: // DeleteEndpoint () is executing. // // * Failed: Endpoint could not be created, // updated, or re-scaled. Use DescribeEndpointOutput$FailureReason () for // information about the failure. DeleteEndpoint () is the only operation that can // be performed on a failed endpoint. // // To get a list of endpoints with a specified // status, use the ListEndpointsInput$StatusEquals () filter. // // This member is required. EndpointStatus EndpointStatus // The Amazon Resource Name (ARN) of the endpoint. // // This member is required. EndpointArn *string // A timestamp that shows when the endpoint was created. // // This member is required. CreationTime *time.Time // A timestamp that shows when the endpoint was last modified. // // This member is required. LastModifiedTime *time.Time }
Provides summary information for an endpoint.
type ExecutionStatus ¶
type ExecutionStatus string
const ( ExecutionStatusPending ExecutionStatus = "Pending" ExecutionStatusCompleted ExecutionStatus = "Completed" ExecutionStatusCompleted_with_violations ExecutionStatus = "CompletedWithViolations" ExecutionStatusIn_progress ExecutionStatus = "InProgress" ExecutionStatusFailed ExecutionStatus = "Failed" ExecutionStatusStopping ExecutionStatus = "Stopping" ExecutionStatusStopped ExecutionStatus = "Stopped" )
Enum values for ExecutionStatus
type Experiment ¶
type Experiment struct { // The list of tags that are associated with the experiment. You can use Search () // API to search on the tags. Tags []*Tag // The source of the experiment. Source *ExperimentSource // Information about the user who created or modified an experiment, trial, or // trial component. LastModifiedBy *UserContext // The description of the experiment. Description *string // Information about the user who created or modified an experiment, trial, or // trial component. CreatedBy *UserContext // The name of the experiment. ExperimentName *string // The Amazon Resource Name (ARN) of the experiment. ExperimentArn *string // The name of the experiment as displayed. If DisplayName isn't specified, // ExperimentName is displayed. DisplayName *string // When the experiment was last modified. LastModifiedTime *time.Time // When the experiment was created. CreationTime *time.Time }
The properties of an experiment as returned by the Search () API.
type ExperimentConfig ¶
type ExperimentConfig struct { // The name of an existing trial to associate the trial component with. If not // specified, a new trial is created. TrialName *string // The name of an existing experiment to associate the trial component with. ExperimentName *string // The display name for the trial component. If this key isn't specified, the // display name is the trial component name. TrialComponentDisplayName *string }
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob ()
*
CreateTrainingJob ()
- CreateTransformJob ()
type ExperimentSource ¶
type ExperimentSource struct { // The Amazon Resource Name (ARN) of the source. // // This member is required. SourceArn *string // The source type. SourceType *string }
The source of the experiment.
type ExperimentSummary ¶
type ExperimentSummary struct { // The source of the experiment. ExperimentSource *ExperimentSource // The name of the experiment. ExperimentName *string // The Amazon Resource Name (ARN) of the experiment. ExperimentArn *string // When the experiment was created. CreationTime *time.Time // When the experiment was last modified. LastModifiedTime *time.Time // The name of the experiment as displayed. If DisplayName isn't specified, // ExperimentName is displayed. DisplayName *string }
A summary of the properties of an experiment. To get the complete set of properties, call the DescribeExperiment () API and provide the ExperimentName.
type FileSystemAccessMode ¶
type FileSystemAccessMode string
const ( FileSystemAccessModeRw FileSystemAccessMode = "rw" FileSystemAccessModeRo FileSystemAccessMode = "ro" )
Enum values for FileSystemAccessMode
type FileSystemDataSource ¶
type FileSystemDataSource struct { // The full path to the directory to associate with the channel. // // This member is required. DirectoryPath *string // The access mode of the mount of the directory associated with the channel. A // directory can be mounted either in ro (read-only) or rw (read-write) mode. // // This member is required. FileSystemAccessMode FileSystemAccessMode // The file system type. // // This member is required. FileSystemType FileSystemType // The file system id. // // This member is required. FileSystemId *string }
Specifies a file system data source for a channel.
type FileSystemType ¶
type FileSystemType string
const ( FileSystemTypeEfs FileSystemType = "EFS" FileSystemTypeFsxlustre FileSystemType = "FSxLustre" )
Enum values for FileSystemType
type Filter ¶
type Filter struct { // A value used with Name and Operator to determine which resources satisfy the // filter's condition. For numerical properties, Value must be an integer or // floating-point decimal. For timestamp properties, Value must be an ISO 8601 // date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS. Value *string // A resource property name. For example, TrainingJobName. For valid property // names, see SearchRecord (). You must specify a valid property for the resource. // // This member is required. Name *string // A Boolean binary operator that is used to evaluate the filter. The operator // field contains one of the following values: Equals The value of Name equals // Value. NotEquals The value of Name doesn't equal Value. Exists The Name property // exists. NotExists The Name property does not exist. GreaterThan The value of // Name is greater than Value. Not supported for text properties. // GreaterThanOrEqualTo The value of Name is greater than or equal to Value. Not // supported for text properties. LessThan The value of Name is less than Value. // Not supported for text properties. LessThanOrEqualTo The value of Name is less // than or equal to Value. Not supported for text properties. In The value of Name // is one of the comma delimited strings in Value. Only supported for text // properties. Contains The value of Name contains the string Value. Only supported // for text properties. A SearchExpression can include the Contains operator // multiple times when the value of Name is one of the following: // // * // Experiment.DisplayName // // * Experiment.ExperimentName // // * Experiment.Tags // // // * Trial.DisplayName // // * Trial.TrialName // // * Trial.Tags // // * // TrialComponent.DisplayName // // * TrialComponent.TrialComponentName // // * // TrialComponent.Tags // // * TrialComponent.InputArtifacts // // * // TrialComponent.OutputArtifacts // // A SearchExpression can include only one Contains // operator for all other values of Name. In these cases, if you include multiple // Contains operators in the SearchExpression, the result is the following error // message: "'CONTAINS' operator usage limit of 1 exceeded." Operator Operator }
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search () API. <p>If you specify a <code>Value</code>, but not an <code>Operator</code>, Amazon SageMaker uses the equals operator.</p> <p>In search, there are several property types:</p> <dl> <dt>Metrics</dt> <dd> <p>To define a metric filter, enter a value using the form <code>"Metrics.<name>"</code>, where <code><name></code> is a metric name. For example, the following filter searches for training jobs with an <code>"accuracy"</code> metric greater than <code>"0.9"</code>:</p> <p> <code>{</code> </p> <p> <code>"Name": "Metrics.accuracy",</code> </p> <p> <code>"Operator": "GreaterThan",</code> </p> <p> <code>"Value": "0.9"</code> </p> <p> <code>}</code> </p> </dd> <dt>HyperParameters</dt> <dd> <p>To define a hyperparameter filter, enter a value with the form <code>"HyperParameters.<name>"</code>. Decimal hyperparameter values are treated as a decimal in a comparison if the specified <code>Value</code> is also a decimal value. If the specified <code>Value</code> is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a <code>"learning_rate"</code> hyperparameter that is less than <code>"0.5"</code>:</p> <p> <code> {</code> </p> <p> <code> "Name": "HyperParameters.learning_rate",</code> </p> <p> <code> "Operator": "LessThan",</code> </p> <p> <code> "Value": "0.5"</code> </p> <p> <code> }</code> </p> </dd> <dt>Tags</dt> <dd> <p>To define a tag filter, enter a value with the form <code>Tags.<key></code>.</p> </dd> </dl>
type FinalAutoMLJobObjectiveMetric ¶
type FinalAutoMLJobObjectiveMetric struct { // The value of the metric. // // This member is required. Value *float32 // The metric type used. Type AutoMLJobObjectiveType // The name of the metric. // // This member is required. MetricName AutoMLMetricEnum }
The candidate result from a job.
type FinalHyperParameterTuningJobObjectiveMetric ¶
type FinalHyperParameterTuningJobObjectiveMetric struct { // Whether to minimize or maximize the objective metric. Valid values are Minimize // and Maximize. Type HyperParameterTuningJobObjectiveType // The value of the objective metric. // // This member is required. Value *float32 // The name of the objective metric. // // This member is required. MetricName *string }
Shows the final value for the objective metric for a training job that was launched by a hyperparameter tuning job. You define the objective metric in the HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig ().
type FlowDefinitionOutputConfig ¶
type FlowDefinitionOutputConfig struct { // The Amazon Key Management Service (KMS) key ID for server-side encryption. KmsKeyId *string // The Amazon S3 path where the object containing human output will be made // available. // // This member is required. S3OutputPath *string }
Contains information about where human output will be stored.
type FlowDefinitionStatus ¶
type FlowDefinitionStatus string
const ( FlowDefinitionStatusInitializing FlowDefinitionStatus = "Initializing" FlowDefinitionStatusActive FlowDefinitionStatus = "Active" FlowDefinitionStatusFailed FlowDefinitionStatus = "Failed" FlowDefinitionStatusDeleting FlowDefinitionStatus = "Deleting" )
Enum values for FlowDefinitionStatus
type FlowDefinitionSummary ¶
type FlowDefinitionSummary struct { // The timestamp when SageMaker created the flow definition. // // This member is required. CreationTime *time.Time // The reason why the flow definition creation failed. A failure reason is returned // only when the flow definition status is Failed. FailureReason *string // The status of the flow definition. Valid values: // // This member is required. FlowDefinitionStatus FlowDefinitionStatus // The Amazon Resource Name (ARN) of the flow definition. // // This member is required. FlowDefinitionArn *string // The name of the flow definition. // // This member is required. FlowDefinitionName *string }
Contains summary information about the flow definition.
type Framework ¶
type Framework string
const ( FrameworkTensorflow Framework = "TENSORFLOW" FrameworkKeras Framework = "KERAS" FrameworkMxnet Framework = "MXNET" FrameworkOnnx Framework = "ONNX" FrameworkPytorch Framework = "PYTORCH" FrameworkXgboost Framework = "XGBOOST" FrameworkTflite Framework = "TFLITE" )
Enum values for Framework
type GitConfig ¶
type GitConfig struct { // The default branch for the Git repository. Branch *string // The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains // the credentials used to access the git repository. The secret must have a // staging label of AWSCURRENT and must be in the following format: {"username": // UserName, "password": Password} SecretArn *string // The URL where the Git repository is located. // // This member is required. RepositoryUrl *string }
Specifies configuration details for a Git repository in your AWS account.
type GitConfigForUpdate ¶
type GitConfigForUpdate struct { // The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains // the credentials used to access the git repository. The secret must have a // staging label of AWSCURRENT and must be in the following format: {"username": // UserName, "password": Password} SecretArn *string }
Specifies configuration details for a Git repository when the repository is updated.
type HumanLoopActivationConditionsConfig ¶
type HumanLoopActivationConditionsConfig struct { // JSON expressing use-case specific conditions declaratively. If any condition is // matched, atomic tasks are created against the configured work team. The set of // conditions is different for Rekognition and Textract. For more information about // how to structure the JSON, see JSON Schema for Human Loop Activation Conditions // in Amazon Augmented AI // (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html) // in the Amazon SageMaker Developer Guide. // This value conforms to the media type: application/json // // This member is required. HumanLoopActivationConditions *string }
Defines under what conditions SageMaker creates a human loop. Used within . See for the required format of activation conditions.
type HumanLoopActivationConfig ¶
type HumanLoopActivationConfig struct { // Container structure for defining under what conditions SageMaker creates a human // loop. // // This member is required. HumanLoopActivationConditionsConfig *HumanLoopActivationConditionsConfig }
Provides information about how and under what conditions SageMaker creates a human loop. If HumanLoopActivationConfig is not given, then all requests go to humans.
type HumanLoopConfig ¶
type HumanLoopConfig struct { // Defines the amount of money paid to an Amazon Mechanical Turk worker for each // task performed. Use one of the following prices for bounding box tasks. Prices // are in US dollars and should be based on the complexity of the task; the longer // it takes in your initial testing, the more you should offer. // // * 0.036 // // * // 0.048 // // * 0.060 // // * 0.072 // // * 0.120 // // * 0.240 // // * 0.360 // // * // 0.480 // // * 0.600 // // * 0.720 // // * 0.840 // // * 0.960 // // * 1.080 // // * // 1.200 // // Use one of the following prices for image classification, text // classification, and custom tasks. Prices are in US dollars. // // * 0.012 // // * // 0.024 // // * 0.036 // // * 0.048 // // * 0.060 // // * 0.072 // // * 0.120 // // * // 0.240 // // * 0.360 // // * 0.480 // // * 0.600 // // * 0.720 // // * 0.840 // // * // 0.960 // // * 1.080 // // * 1.200 // // Use one of the following prices for semantic // segmentation tasks. Prices are in US dollars. // // * 0.840 // // * 0.960 // // * // 1.080 // // * 1.200 // // Use one of the following prices for Textract AnalyzeDocument // Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars. // // // * 2.400 // // * 2.280 // // * 2.160 // // * 2.040 // // * 1.920 // // * 1.800 // // * // 1.680 // // * 1.560 // // * 1.440 // // * 1.320 // // * 1.200 // // * 1.080 // // * // 0.960 // // * 0.840 // // * 0.720 // // * 0.600 // // * 0.480 // // * 0.360 // // * // 0.240 // // * 0.120 // // * 0.072 // // * 0.060 // // * 0.048 // // * 0.036 // // * // 0.024 // // * 0.012 // // Use one of the following prices for Rekognition // DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US // dollars. // // * 1.200 // // * 1.080 // // * 0.960 // // * 0.840 // // * 0.720 // // * // 0.600 // // * 0.480 // // * 0.360 // // * 0.240 // // * 0.120 // // * 0.072 // // * // 0.060 // // * 0.048 // // * 0.036 // // * 0.024 // // * 0.012 // // Use one of the // following prices for Amazon Augmented AI custom human review tasks. Prices are // in US dollars. // // * 1.200 // // * 1.080 // // * 0.960 // // * 0.840 // // * // 0.720 // // * 0.600 // // * 0.480 // // * 0.360 // // * 0.240 // // * 0.120 // // * // 0.072 // // * 0.060 // // * 0.048 // // * 0.036 // // * 0.024 // // * 0.012 PublicWorkforceTaskPrice *PublicWorkforceTaskPrice // The amount of time that a worker has to complete a task. TaskTimeLimitInSeconds *int32 // The number of distinct workers who will perform the same task on each object. // For example, if TaskCount is set to 3 for an image classification labeling job, // three workers will classify each input image. Increasing TaskCount can improve // label accuracy. // // This member is required. TaskCount *int32 // Keywords used to describe the task so that workers can discover the task. TaskKeywords []*string // The length of time that a task remains available for labeling by human workers. TaskAvailabilityLifetimeInSeconds *int32 // A title for the human worker task. // // This member is required. TaskTitle *string // The Amazon Resource Name (ARN) of the human task user interface. // // This member is required. HumanTaskUiArn *string // A description for the human worker task. // // This member is required. TaskDescription *string // Amazon Resource Name (ARN) of a team of workers. // // This member is required. WorkteamArn *string }
Describes the work to be performed by human workers.
type HumanLoopRequestSource ¶
type HumanLoopRequestSource struct { // Specifies whether Amazon Rekognition or Amazon Textract are used as the // integration source. The default field settings and JSON parsing rules are // different based on the integration source. Valid values: // // This member is required. AwsManagedHumanLoopRequestSource AwsManagedHumanLoopRequestSource }
Container for configuring the source of human task requests.
type HumanTaskConfig ¶
type HumanTaskConfig struct { // The Amazon Resource Name (ARN) of the work team assigned to complete the tasks. // // This member is required. WorkteamArn *string // Defines the maximum number of data objects that can be labeled by human workers // at the same time. Also referred to as batch size. Each object may have more than // one worker at one time. The default value is 1000 objects. MaxConcurrentTaskCount *int32 // Configures how labels are consolidated across human workers. // // This member is required. AnnotationConsolidationConfig *AnnotationConsolidationConfig // Information about the user interface that workers use to complete the labeling // task. // // This member is required. UiConfig *UiConfig // Keywords used to describe the task so that workers on Amazon Mechanical Turk can // discover the task. TaskKeywords []*string // The amount of time that a worker has to complete a task. // // This member is required. TaskTimeLimitInSeconds *int32 // A title for the task for your human workers. // // This member is required. TaskTitle *string // The Amazon Resource Name (ARN) of a Lambda function that is run before a data // object is sent to a human worker. Use this function to provide input to a custom // labeling job. For built-in task types // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html), use one // of the following Amazon SageMaker Ground Truth Lambda function ARNs for // PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda). // <p> <b>Bounding box</b> - Finds the most similar boxes from different workers // based on the Jaccard index of the boxes.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox</code> </p> // </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox</code> </p> // </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox</code> </p> // </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox</code> </p> // </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox</code> </p> // </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox</code> // </p> </li> </ul> <p> <b>Image classification</b> - Uses a variant of the // Expectation Maximization approach to estimate the true class of an image based // on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass</code> // </p> </li> </ul> <p> <b>Multi-label image classification</b> - Uses a variant of // the Expectation Maximization approach to estimate the true classes of an image // based on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel</code> // </p> </li> </ul> <p> <b>Semantic segmentation</b> - Treats each pixel in an // image as a multi-class classification and treats pixel annotations from workers // as "votes" for the correct label.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation</code> // </p> </li> </ul> <p> <b>Text classification</b> - Uses a variant of the // Expectation Maximization approach to estimate the true class of text based on // annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass</code> // </p> </li> </ul> <p> <b>Multi-label text classification</b> - Uses a variant of // the Expectation Maximization approach to estimate the true classes of text based // on annotations from individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel</code> // </p> </li> </ul> <p> <b>Named entity recognition</b> - Groups similar selections // and calculates aggregate boundaries, resolving to most-assigned label.</p> <ul> // <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition</code> // </p> </li> </ul> <p> <b>Video Classification</b> - Use this task type when you // need workers to classify videos using predefined labels that you specify. // Workers are shown videos and are asked to choose one label for each video.</p> // <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass</code> // </p> </li> </ul> <p> <b>Video Frame Object Detection</b> - Use this task type to // have workers identify and locate objects in a sequence of video frames (images // extracted from a video) using bounding boxes. For example, you can use this task // to ask workers to identify and localize various objects in a series of video // frames, such as cars, bikes, and pedestrians.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection</code> // </p> </li> </ul> <p> <b>Video Frame Object Tracking</b> - Use this task type to // have workers track the movement of objects in a sequence of video frames (images // extracted from a video) using bounding boxes. For example, you can use this task // to ask workers to track the movement of objects, such as cars, bikes, and // pedestrians. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking</code> // </p> </li> </ul> <p> <b>3D Point Cloud Modalities</b> </p> <p>Use the following // pre-annotation lambdas for 3D point cloud labeling modality tasks. See <a // href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html">3D // Point Cloud Task types </a> to learn more. </p> <p> <b>3D Point Cloud Object // Detection</b> - Use this task type when you want workers to classify objects in // a 3D point cloud by drawing 3D cuboids around objects. For example, you can use // this task type to ask workers to identify different types of objects in a point // cloud, such as cars, bikes, and pedestrians.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection</code> // </p> </li> </ul> <p> <b>3D Point Cloud Object Tracking</b> - Use this task type // when you want workers to draw 3D cuboids around objects that appear in a // sequence of 3D point cloud frames. For example, you can use this task type to // ask workers to track the movement of vehicles across multiple point cloud // frames. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking</code> // </p> </li> </ul> <p> <b>3D Point Cloud Semantic Segmentation</b> - Use this task // type when you want workers to create a point-level semantic segmentation masks // by painting objects in a 3D point cloud using different colors where each color // is assigned to one of the classes you specify.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Use the following ARNs for Label Verification and // Adjustment Jobs</b> </p> <p>Use label verification and adjustment jobs to review // and adjust labels. To learn more, see <a // href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html">Verify // and Adjust Labels </a>.</p> <p> <b>Bounding box verification</b> - Uses a // variant of the Expectation Maximization approach to estimate the true class of // verification judgement for bounding box labels based on annotations from // individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> </ul> <p> <b>Bounding box adjustment</b> - Finds the most similar // boxes from different workers based on the Jaccard index of the adjusted // annotations.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox</code> // </p> </li> </ul> <p> <b>Semantic segmentation verification</b> - Uses a variant // of the Expectation Maximization approach to estimate the true class of // verification judgment for semantic segmentation labels based on annotations from // individual workers.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Semantic segmentation adjustment</b> - Treats each pixel // in an image as a multi-class classification and treats pixel adjusted // annotations from workers as "votes" for the correct label.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Video Frame Object Detection Adjustment</b> - Use this // task type when you want workers to adjust bounding boxes that workers have added // to video frames to classify and localize objects in a sequence of video // frames.</p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection</code> // </p> </li> </ul> <p> <b>Video Frame Object Tracking Adjustment</b> - Use this // task type when you want workers to adjust bounding boxes that workers have added // to video frames to track object movement across a sequence of video frames.</p> // <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud object detection adjustment</b> - Adjust // 3D cuboids in a point cloud frame. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection</code> // </p> </li> </ul> <p> <b>3D point cloud object tracking adjustment</b> - Adjust // 3D cuboids across a sequence of point cloud frames. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking</code> // </p> </li> </ul> <p> <b>3D point cloud semantic segmentation adjustment</b> - // Adjust semantic segmentation masks in a 3D point cloud. </p> <ul> <li> <p> // <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> <li> <p> // <code>arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation</code> // </p> </li> </ul> // // This member is required. PreHumanTaskLambdaArn *string // The length of time that a task remains available for labeling by human workers. // If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours // (43200). The default value is 864000 seconds (10 days). For private and vendor // workforces, the maximum is as listed. TaskAvailabilityLifetimeInSeconds *int32 // The price that you pay for each task performed by an Amazon Mechanical Turk // worker. PublicWorkforceTaskPrice *PublicWorkforceTaskPrice // The number of human workers that will label an object. // // This member is required. NumberOfHumanWorkersPerDataObject *int32 // A description of the task for your human workers. // // This member is required. TaskDescription *string }
Information required for human workers to complete a labeling task.
type HumanTaskUiStatus ¶
type HumanTaskUiStatus string
const ( HumanTaskUiStatusActive HumanTaskUiStatus = "Active" HumanTaskUiStatusDeleting HumanTaskUiStatus = "Deleting" )
Enum values for HumanTaskUiStatus
type HumanTaskUiSummary ¶
type HumanTaskUiSummary struct { // The Amazon Resource Name (ARN) of the human task user interface. // // This member is required. HumanTaskUiArn *string // The name of the human task user interface. // // This member is required. HumanTaskUiName *string // A timestamp when SageMaker created the human task user interface. // // This member is required. CreationTime *time.Time }
Container for human task user interface information.
type HyperParameterAlgorithmSpecification ¶
type HyperParameterAlgorithmSpecification struct { // The input mode that the algorithm supports: File or Pipe. In File input mode, // Amazon SageMaker downloads the training data from Amazon S3 to the storage // volume that is attached to the training instance and mounts the directory to the // Docker volume for the training container. In Pipe input mode, Amazon SageMaker // streams data directly from Amazon S3 to the container. If you specify File mode, // make sure that you provision the storage volume that is attached to the training // instance with enough capacity to accommodate the training data downloaded from // Amazon S3, the model artifacts, and intermediate information. For more // information about input modes, see Algorithms // (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). // // This member is required. TrainingInputMode TrainingInputMode // An array of MetricDefinition () objects that specify the metrics that the // algorithm emits. MetricDefinitions []*MetricDefinition // The name of the resource algorithm to use for the hyperparameter tuning job. If // you specify a value for this parameter, do not specify a value for // TrainingImage. AlgorithmName *string // The registry path of the Docker image that contains the training algorithm. For // information about Docker registry paths for built-in algorithms, see Algorithms // Provided by Amazon SageMaker: Common Parameters // (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html). // Amazon SageMaker supports both registry/repository[:tag] and // registry/repository[@digest] image path formats. For more information, see Using // Your Own Algorithms with Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html). TrainingImage *string }
Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.
type HyperParameterScalingType ¶
type HyperParameterScalingType string
const ( HyperParameterScalingTypeAuto HyperParameterScalingType = "Auto" HyperParameterScalingTypeLinear HyperParameterScalingType = "Linear" HyperParameterScalingTypeLogarithmic HyperParameterScalingType = "Logarithmic" HyperParameterScalingTypeReverse_logarithmic HyperParameterScalingType = "ReverseLogarithmic" )
Enum values for HyperParameterScalingType
type HyperParameterSpecification ¶
type HyperParameterSpecification struct { // The type of this hyperparameter. The valid types are Integer, Continuous, // Categorical, and FreeText. // // This member is required. Type ParameterType // A brief description of the hyperparameter. Description *string // The allowed range for this hyperparameter. Range *ParameterRange // The name of this hyperparameter. The name must be unique. // // This member is required. Name *string // The default value for this hyperparameter. If a default value is specified, a // hyperparameter cannot be required. DefaultValue *string // Indicates whether this hyperparameter is tunable in a hyperparameter tuning job. IsTunable *bool // Indicates whether this hyperparameter is required. IsRequired *bool }
Defines a hyperparameter to be used by an algorithm.
type HyperParameterTrainingJobDefinition ¶
type HyperParameterTrainingJobDefinition struct { // To encrypt all communications between ML compute instances in distributed // training, choose True. Encryption provides greater security for distributed // training, but training might take longer. How long it takes depends on the // amount of communication between compute instances, especially if you use a deep // learning algorithm in distributed training. EnableInterContainerTrafficEncryption *bool // Isolates the training container. No inbound or outbound network calls can be // made, except for calls between peers within a training cluster for distributed // training. If network isolation is used for training jobs that are configured to // use a VPC, Amazon SageMaker downloads and uploads customer data and model // artifacts through the specified VPC, but the training container does not have // network access. EnableNetworkIsolation *bool // Specifies a limit to how long a model hyperparameter training job can run. It // also specifies how long you are willing to wait for a managed spot training job // to complete. When the job reaches the a limit, Amazon SageMaker ends the // training job. Use this API to cap model training costs. // // This member is required. StoppingCondition *StoppingCondition // Specifies the values of hyperparameters that do not change for the tuning job. StaticHyperParameters map[string]*string // Specifies ranges of integer, continuous, and categorical hyperparameters that a // hyperparameter tuning job searches. The hyperparameter tuning job launches // training jobs with hyperparameter values within these ranges to find the // combination of values that result in the training job with the best performance // as measured by the objective metric of the hyperparameter tuning job. You can // specify a maximum of 20 hyperparameters that a hyperparameter tuning job can // search over. Every possible value of a categorical parameter range counts // against this limit. HyperParameterRanges *ParameterRanges // The resources, including the compute instances and storage volumes, to use for // the training jobs that the tuning job launches. Storage volumes store model // artifacts and incremental states. Training algorithms might also use storage // volumes for scratch space. If you want Amazon SageMaker to use the storage // volume to store the training data, choose File as the TrainingInputMode in the // algorithm specification. For distributed training algorithms, specify an // instance count greater than 1. // // This member is required. ResourceConfig *ResourceConfig // Defines the objective metric for a hyperparameter tuning job. Hyperparameter // tuning uses the value of this metric to evaluate the training jobs it launches, // and returns the training job that results in either the highest or lowest value // for this metric, depending on the value you specify for the Type parameter. TuningObjective *HyperParameterTuningJobObjective // The HyperParameterAlgorithmSpecification () object that specifies the resource // algorithm to use for the training jobs that the tuning job launches. // // This member is required. AlgorithmSpecification *HyperParameterAlgorithmSpecification // The job definition name. DefinitionName *string // Contains information about the output location for managed spot training // checkpoint data. CheckpointConfig *CheckpointConfig // The VpcConfig () object that specifies the VPC that you want the training jobs // that this hyperparameter tuning job launches to connect to. Control access to // and from your training container by configuring the VPC. For more information, // see Protect Training Jobs by Using an Amazon Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html). VpcConfig *VpcConfig // Specifies the path to the Amazon S3 bucket where you store model artifacts from // the training jobs that the tuning job launches. // // This member is required. OutputDataConfig *OutputDataConfig // An array of Channel () objects that specify the input for the training jobs that // the tuning job launches. InputDataConfig []*Channel // The Amazon Resource Name (ARN) of the IAM role associated with the training jobs // that the tuning job launches. // // This member is required. RoleArn *string // A Boolean indicating whether managed spot training is enabled (True) or not // (False). EnableManagedSpotTraining *bool }
Defines the training jobs launched by a hyperparameter tuning job.
type HyperParameterTrainingJobSummary ¶
type HyperParameterTrainingJobSummary struct { // The date and time that the training job started. TrainingStartTime *time.Time // The date and time that the training job was created. // // This member is required. CreationTime *time.Time // Specifies the time when the training job ends on training instances. You are // billed for the time interval between the value of TrainingStartTime and this // time. For successful jobs and stopped jobs, this is the time after model // artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker // detects a job failure. TrainingEndTime *time.Time // The reason that the training job failed. FailureReason *string // The training job definition name. TrainingJobDefinitionName *string // The HyperParameter tuning job that launched the training job. TuningJobName *string // The status of the training job. // // This member is required. TrainingJobStatus TrainingJobStatus // A list of the hyperparameters for which you specified ranges to search. // // This member is required. TunedHyperParameters map[string]*string // The name of the training job. // // This member is required. TrainingJobName *string // The status of the objective metric for the training job: // // * Succeeded: The // final objective metric for the training job was evaluated by the hyperparameter // tuning job and used in the hyperparameter tuning process. // // * Pending: The // training job is in progress and evaluation of its final objective metric is // pending. // // * Failed: The final objective metric for the training job was not // evaluated, and was not used in the hyperparameter tuning process. This typically // occurs when the training job failed or did not emit an objective metric. ObjectiveStatus ObjectiveStatus // The FinalHyperParameterTuningJobObjectiveMetric () object that specifies the // value of the objective metric of the tuning job that launched this training job. FinalHyperParameterTuningJobObjectiveMetric *FinalHyperParameterTuningJobObjectiveMetric // The Amazon Resource Name (ARN) of the training job. // // This member is required. TrainingJobArn *string }
Specifies summary information about a training job.
type HyperParameterTuningJobConfig ¶
type HyperParameterTuningJobConfig struct { // The HyperParameterTuningJobObjective () object that specifies the objective // metric for this tuning job. HyperParameterTuningJobObjective *HyperParameterTuningJobObjective // The tuning job's completion criteria. TuningJobCompletionCriteria *TuningJobCompletionCriteria // The ResourceLimits () object that specifies the maximum number of training jobs // and parallel training jobs for this tuning job. // // This member is required. ResourceLimits *ResourceLimits // Specifies how hyperparameter tuning chooses the combinations of hyperparameter // values to use for the training job it launches. To use the Bayesian search // strategy, set this to Bayesian. To randomly search, set it to Random. For // information about search strategies, see How Hyperparameter Tuning Works // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html). // // This member is required. Strategy HyperParameterTuningJobStrategyType // Specifies whether to use early stopping for training jobs launched by the // hyperparameter tuning job. This can be one of the following values (the default // value is OFF): OFF Training jobs launched by the hyperparameter tuning job do // not use early stopping. AUTO Amazon SageMaker stops training jobs launched by // the hyperparameter tuning job when they are unlikely to perform better than // previously completed training jobs. For more information, see Stop Training Jobs // Early // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html). TrainingJobEarlyStoppingType TrainingJobEarlyStoppingType // The ParameterRanges () object that specifies the ranges of hyperparameters that // this tuning job searches. ParameterRanges *ParameterRanges }
Configures a hyperparameter tuning job.
type HyperParameterTuningJobObjective ¶
type HyperParameterTuningJobObjective struct { // The name of the metric to use for the objective metric. // // This member is required. MetricName *string // Whether to minimize or maximize the objective metric. // // This member is required. Type HyperParameterTuningJobObjectiveType }
Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.
type HyperParameterTuningJobObjectiveType ¶
type HyperParameterTuningJobObjectiveType string
const ( HyperParameterTuningJobObjectiveTypeMaximize HyperParameterTuningJobObjectiveType = "Maximize" HyperParameterTuningJobObjectiveTypeMinimize HyperParameterTuningJobObjectiveType = "Minimize" )
Enum values for HyperParameterTuningJobObjectiveType
type HyperParameterTuningJobSortByOptions ¶
type HyperParameterTuningJobSortByOptions string
const ( HyperParameterTuningJobSortByOptionsName HyperParameterTuningJobSortByOptions = "Name" HyperParameterTuningJobSortByOptionsStatus HyperParameterTuningJobSortByOptions = "Status" HyperParameterTuningJobSortByOptionsCreationtime HyperParameterTuningJobSortByOptions = "CreationTime" )
Enum values for HyperParameterTuningJobSortByOptions
type HyperParameterTuningJobStatus ¶
type HyperParameterTuningJobStatus string
const ( HyperParameterTuningJobStatusCompleted HyperParameterTuningJobStatus = "Completed" HyperParameterTuningJobStatusIn_progress HyperParameterTuningJobStatus = "InProgress" HyperParameterTuningJobStatusFailed HyperParameterTuningJobStatus = "Failed" HyperParameterTuningJobStatusStopped HyperParameterTuningJobStatus = "Stopped" HyperParameterTuningJobStatusStopping HyperParameterTuningJobStatus = "Stopping" )
Enum values for HyperParameterTuningJobStatus
type HyperParameterTuningJobStrategyType ¶
type HyperParameterTuningJobStrategyType string
const ( HyperParameterTuningJobStrategyTypeBayesian HyperParameterTuningJobStrategyType = "Bayesian" HyperParameterTuningJobStrategyTypeRandom HyperParameterTuningJobStrategyType = "Random" )
Enum values for HyperParameterTuningJobStrategyType
type HyperParameterTuningJobSummary ¶
type HyperParameterTuningJobSummary struct { // The ResourceLimits () object that specifies the maximum number of training jobs // and parallel training jobs allowed for this tuning job. ResourceLimits *ResourceLimits // The date and time that the tuning job was modified. LastModifiedTime *time.Time // The Amazon Resource Name (ARN) of the tuning job. // // This member is required. HyperParameterTuningJobArn *string // Specifies the search strategy hyperparameter tuning uses to choose which // hyperparameters to use for each iteration. Currently, the only valid value is // Bayesian. // // This member is required. Strategy HyperParameterTuningJobStrategyType // The date and time that the tuning job was created. // // This member is required. CreationTime *time.Time // The status of the tuning job. // // This member is required. HyperParameterTuningJobStatus HyperParameterTuningJobStatus // The ObjectiveStatusCounters () object that specifies the numbers of training // jobs, categorized by objective metric status, that this tuning job launched. // // This member is required. ObjectiveStatusCounters *ObjectiveStatusCounters // The TrainingJobStatusCounters () object that specifies the numbers of training // jobs, categorized by status, that this tuning job launched. // // This member is required. TrainingJobStatusCounters *TrainingJobStatusCounters // The date and time that the tuning job ended. HyperParameterTuningEndTime *time.Time // The name of the tuning job. // // This member is required. HyperParameterTuningJobName *string }
Provides summary information about a hyperparameter tuning job.
type HyperParameterTuningJobWarmStartConfig ¶
type HyperParameterTuningJobWarmStartConfig struct { // An array of hyperparameter tuning jobs that are used as the starting point for // the new hyperparameter tuning job. For more information about warm starting a // hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a // Starting Point // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html). // Hyperparameter tuning jobs created before October 1, 2018 cannot be used as // parent jobs for warm start tuning jobs. // // This member is required. ParentHyperParameterTuningJobs []*ParentHyperParameterTuningJob // Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new // hyperparameter tuning job uses the same input data and training image as the // parent tuning jobs. You can change the hyperparameter ranges to search and the // maximum number of training jobs that the hyperparameter tuning job launches. You // cannot use a new version of the training algorithm, unless the changes in the // new version do not affect the algorithm itself. For example, changes that // improve logging or adding support for a different data format are allowed. You // can also change hyperparameters from tunable to static, and from static to // tunable, but the total number of static plus tunable hyperparameters must remain // the same as it is in all parent jobs. The objective metric for the new tuning // job must be the same as for all parent jobs. TRANSFER_LEARNING The new // hyperparameter tuning job can include input data, hyperparameter ranges, maximum // number of concurrent training jobs, and maximum number of training jobs that are // different than those of its parent hyperparameter tuning jobs. The training // image can also be a different version from the version used in the parent // hyperparameter tuning job. You can also change hyperparameters from tunable to // static, and from static to tunable, but the total number of static plus tunable // hyperparameters must remain the same as it is in all parent jobs. The objective // metric for the new tuning job must be the same as for all parent jobs. // // This member is required. WarmStartType HyperParameterTuningJobWarmStartType }
Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.
type HyperParameterTuningJobWarmStartType ¶
type HyperParameterTuningJobWarmStartType string
const ( HyperParameterTuningJobWarmStartTypeIdentical_data_and_algorithm HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm" HyperParameterTuningJobWarmStartTypeTransfer_learning HyperParameterTuningJobWarmStartType = "TransferLearning" )
Enum values for HyperParameterTuningJobWarmStartType
type InferenceSpecification ¶
type InferenceSpecification struct { // A list of the instance types that are used to generate inferences in real-time. // // This member is required. SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType // The supported MIME types for the input data. // // This member is required. SupportedContentTypes []*string // A list of the instance types on which a transformation job can be run or on // which an endpoint can be deployed. // // This member is required. SupportedTransformInstanceTypes []TransformInstanceType // The supported MIME types for the output data. // // This member is required. SupportedResponseMIMETypes []*string // The Amazon ECR registry path of the Docker image that contains the inference // code. // // This member is required. Containers []*ModelPackageContainerDefinition }
Defines how to perform inference generation after a training job is run.
type InputConfig ¶
type InputConfig struct { // Identifies the framework in which the model was trained. For example: // TENSORFLOW. // // This member is required. Framework Framework // Specifies the name and shape of the expected data inputs for your trained model // with a JSON dictionary form. The data inputs are InputConfig$Framework () // specific. // // * TensorFlow: You must specify the name and shape (NHWC format) // of the expected data inputs using a dictionary format for your trained model. // The dictionary formats required for the console and CLI are different. // // // * Examples for one input: // // * If using the console, // {"input":[1,1024,1024,3]} // // * If using the CLI, // {\"input\":[1,1024,1024,3]} // // * Examples for two inputs: // // * // If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} // // * // If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} // // * KERAS: // You must specify the name and shape (NCHW format) of expected data inputs using // a dictionary format for your trained model. Note that while Keras model // artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig // should be specified in NCHW (channel-first) format. The dictionary formats // required for the console and CLI are different. // // * Examples for one // input: // // * If using the console, {"input_1":[1,3,224,224]} // // // * If using the CLI, {\"input_1\":[1,3,224,224]} // // * Examples for two // inputs: // // * If using the console, {"input_1": [1,3,224,224], // "input_2":[1,3,224,224]} // // * If using the CLI, {\"input_1\": // [1,3,224,224], \"input_2\":[1,3,224,224]} // // * MXNET/ONNX: You must specify // the name and shape (NCHW format) of the expected data inputs in order using a // dictionary format for your trained model. The dictionary formats required for // the console and CLI are different. // // * Examples for one input: // // // * If using the console, {"data":[1,3,1024,1024]} // // * If using the // CLI, {\"data\":[1,3,1024,1024]} // // * Examples for two inputs: // // // * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} // // * // If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} // // * PyTorch: // You can either specify the name and shape (NCHW format) of expected data inputs // in order using a dictionary format for your trained model or you can specify the // shape only using a list format. The dictionary formats required for the console // and CLI are different. The list formats for the console and CLI are the same. // // // * Examples for one input in dictionary format: // // * If using the // console, {"input0":[1,3,224,224]} // // * If using the CLI, // {\"input0\":[1,3,224,224]} // // * Example for one input in list format: // [[1,3,224,224]] // // * Examples for two inputs in dictionary format: // // // * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} // // // * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} // // // * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] // // * // XGBOOST: input data name and shape are not needed. // // This member is required. DataInputConfig *string // The S3 path where the model artifacts, which result from model training, are // stored. This path must point to a single gzip compressed tar archive (.tar.gz // suffix). // // This member is required. S3Uri *string }
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
type InstanceType ¶
type InstanceType string
const ( InstanceTypeMl_t2_medium InstanceType = "ml.t2.medium" InstanceTypeMl_t2_large InstanceType = "ml.t2.large" InstanceTypeMl_t2_xlarge InstanceType = "ml.t2.xlarge" InstanceTypeMl_t2_2xlarge InstanceType = "ml.t2.2xlarge" InstanceTypeMl_t3_medium InstanceType = "ml.t3.medium" InstanceTypeMl_t3_large InstanceType = "ml.t3.large" InstanceTypeMl_t3_xlarge InstanceType = "ml.t3.xlarge" InstanceTypeMl_t3_2xlarge InstanceType = "ml.t3.2xlarge" InstanceTypeMl_m4_xlarge InstanceType = "ml.m4.xlarge" InstanceTypeMl_m4_2xlarge InstanceType = "ml.m4.2xlarge" InstanceTypeMl_m4_4xlarge InstanceType = "ml.m4.4xlarge" InstanceTypeMl_m4_10xlarge InstanceType = "ml.m4.10xlarge" InstanceTypeMl_m4_16xlarge InstanceType = "ml.m4.16xlarge" InstanceTypeMl_m5_xlarge InstanceType = "ml.m5.xlarge" InstanceTypeMl_m5_2xlarge InstanceType = "ml.m5.2xlarge" InstanceTypeMl_m5_4xlarge InstanceType = "ml.m5.4xlarge" InstanceTypeMl_m5_12xlarge InstanceType = "ml.m5.12xlarge" InstanceTypeMl_m5_24xlarge InstanceType = "ml.m5.24xlarge" InstanceTypeMl_c4_xlarge InstanceType = "ml.c4.xlarge" InstanceTypeMl_c4_2xlarge InstanceType = "ml.c4.2xlarge" InstanceTypeMl_c4_4xlarge InstanceType = "ml.c4.4xlarge" InstanceTypeMl_c4_8xlarge InstanceType = "ml.c4.8xlarge" InstanceTypeMl_c5_xlarge InstanceType = "ml.c5.xlarge" InstanceTypeMl_c5_2xlarge InstanceType = "ml.c5.2xlarge" InstanceTypeMl_c5_4xlarge InstanceType = "ml.c5.4xlarge" InstanceTypeMl_c5_9xlarge InstanceType = "ml.c5.9xlarge" InstanceTypeMl_c5_18xlarge InstanceType = "ml.c5.18xlarge" InstanceTypeMl_c5d_xlarge InstanceType = "ml.c5d.xlarge" InstanceTypeMl_c5d_2xlarge InstanceType = "ml.c5d.2xlarge" InstanceTypeMl_c5d_4xlarge InstanceType = "ml.c5d.4xlarge" InstanceTypeMl_c5d_9xlarge InstanceType = "ml.c5d.9xlarge" InstanceTypeMl_c5d_18xlarge InstanceType = "ml.c5d.18xlarge" InstanceTypeMl_p2_xlarge InstanceType = "ml.p2.xlarge" InstanceTypeMl_p2_8xlarge InstanceType = "ml.p2.8xlarge" InstanceTypeMl_p2_16xlarge InstanceType = "ml.p2.16xlarge" InstanceTypeMl_p3_2xlarge InstanceType = "ml.p3.2xlarge" InstanceTypeMl_p3_8xlarge InstanceType = "ml.p3.8xlarge" InstanceTypeMl_p3_16xlarge InstanceType = "ml.p3.16xlarge" )
Enum values for InstanceType
type IntegerParameterRange ¶
type IntegerParameterRange struct { // The scale that hyperparameter tuning uses to search the hyperparameter range. // For information about choosing a hyperparameter scale, see Hyperparameter // Scaling // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type). // One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses // the best scale for the hyperparameter. Linear Hyperparameter tuning searches the // values in the hyperparameter range by using a linear scale. Logarithmic // Hyperparameter tuning searches the values in the hyperparameter range by using a // logarithmic scale. Logarithmic scaling works only for ranges that have only // values greater than 0. ScalingType HyperParameterScalingType // The maximum value of the hyperparameter to search. // // This member is required. MaxValue *string // The minimum value of the hyperparameter to search. // // This member is required. MinValue *string // The name of the hyperparameter to search. // // This member is required. Name *string }
For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.
type IntegerParameterRangeSpecification ¶
type IntegerParameterRangeSpecification struct { // The maximum integer value allowed. // // This member is required. MaxValue *string // The minimum integer value allowed. // // This member is required. MinValue *string }
Defines the possible values for an integer hyperparameter.
type JoinSource ¶
type JoinSource string
const ( JoinSourceInput JoinSource = "Input" JoinSourceNone JoinSource = "None" )
Enum values for JoinSource
type JupyterServerAppSettings ¶
type JupyterServerAppSettings struct { // The default instance type and the Amazon Resource Name (ARN) of the SageMaker // image created on the instance. DefaultResourceSpec *ResourceSpec }
Jupyter server's app settings.
type KernelGatewayAppSettings ¶
type KernelGatewayAppSettings struct { // The default instance type and the Amazon Resource Name (ARN) of the SageMaker // image created on the instance. DefaultResourceSpec *ResourceSpec }
The kernel gateway app settings.
type LabelCounters ¶
type LabelCounters struct { // The total number of objects labeled by automated data labeling. MachineLabeled *int32 // The total number of objects that could not be labeled due to an error. FailedNonRetryableError *int32 // The total number of objects labeled. TotalLabeled *int32 // The total number of objects labeled by a human worker. HumanLabeled *int32 // The total number of objects not yet labeled. Unlabeled *int32 }
Provides a breakdown of the number of objects labeled.
type LabelCountersForWorkteam ¶
type LabelCountersForWorkteam struct { // The total number of data objects that need to be labeled by a human worker. PendingHuman *int32 // The total number of tasks in the labeling job. Total *int32 // The total number of data objects labeled by a human worker. HumanLabeled *int32 }
Provides counts for human-labeled tasks in the labeling job.
type LabelingJobAlgorithmsConfig ¶
type LabelingJobAlgorithmsConfig struct { // At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon // Resource Nam (ARN) of the final model used for auto-labeling. You can use this // model as the starting point for subsequent similar jobs by providing the ARN of // the model here. InitialActiveLearningModelArn *string // Provides configuration information for a labeling job. LabelingJobResourceConfig *LabelingJobResourceConfig // Specifies the Amazon Resource Name (ARN) of the algorithm used for // auto-labeling. You must select one of the following ARNs: // // * Image // classification // arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification // // // * Text classification // arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification // // // * Object detection // arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection // // // * Semantic Segmentation // arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation // // This member is required. LabelingJobAlgorithmSpecificationArn *string }
Provides configuration information for auto-labeling of your data objects. A LabelingJobAlgorithmsConfig object must be supplied in order to use auto-labeling.
type LabelingJobDataAttributes ¶
type LabelingJobDataAttributes struct { // Declares that your content is free of personally identifiable information or // adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers // that can view your task based on this information. ContentClassifiers []ContentClassifier }
Attributes of the data specified by the customer. Use these to describe the data to be labeled.
type LabelingJobDataSource ¶
type LabelingJobDataSource struct { // The Amazon S3 location of the input data objects. S3DataSource *LabelingJobS3DataSource }
Provides information about the location of input data.
type LabelingJobForWorkteamSummary ¶
type LabelingJobForWorkteamSummary struct { // Provides information about the progress of a labeling job. LabelCounters *LabelCountersForWorkteam // A unique identifier for a labeling job. You can use this to refer to a specific // labeling job. // // This member is required. JobReferenceCode *string // The configured number of workers per data object. NumberOfHumanWorkersPerDataObject *int32 // // // This member is required. WorkRequesterAccountId *string // The date and time that the labeling job was created. // // This member is required. CreationTime *time.Time // The name of the labeling job that the work team is assigned to. LabelingJobName *string }
Provides summary information for a work team.
type LabelingJobInputConfig ¶
type LabelingJobInputConfig struct { // The location of the input data. // // This member is required. DataSource *LabelingJobDataSource // Attributes of the data specified by the customer. DataAttributes *LabelingJobDataAttributes }
Input configuration information for a labeling job.
type LabelingJobOutput ¶
type LabelingJobOutput struct { // The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model // trained as part of automated data labeling. FinalActiveLearningModelArn *string // The Amazon S3 bucket location of the manifest file for labeled data. // // This member is required. OutputDatasetS3Uri *string }
Specifies the location of the output produced by the labeling job.
type LabelingJobOutputConfig ¶
type LabelingJobOutputConfig struct { // The AWS Key Management Service ID of the key used to encrypt the output data, if // any. If you use a KMS key ID or an alias of your master key, the Amazon // SageMaker execution role must include permissions to call kms:Encrypt. If you // don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon // S3 for your role's account. Amazon SageMaker uses server-side encryption with // KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an // s3:PutObject permission that only allows objects with server-side encryption, // set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more // information, see KMS-Managed Encryption Keys // (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the // Amazon Simple Storage Service Developer Guide. The KMS key policy must grant // permission to the IAM role that you specify in your CreateLabelingJob request. // For more information, see Using Key Policies in AWS KMS // (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the // AWS Key Management Service Developer Guide. KmsKeyId *string // The Amazon S3 location to write output data. // // This member is required. S3OutputPath *string }
Output configuration information for a labeling job.
type LabelingJobResourceConfig ¶
type LabelingJobResourceConfig struct { // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt data on the storage volume attached to the ML compute instance(s) that // run the training job. The VolumeKmsKeyId can be any of the following formats: // // // * // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // // * // Amazon Resource // Name (ARN) of a KMS Key // "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" VolumeKmsKeyId *string }
Provides configuration information for labeling jobs.
type LabelingJobS3DataSource ¶
type LabelingJobS3DataSource struct { // The Amazon S3 location of the manifest file that describes the input data // objects. // // This member is required. ManifestS3Uri *string }
The Amazon S3 location of the input data objects.
type LabelingJobStatus ¶
type LabelingJobStatus string
const ( LabelingJobStatusInitializing LabelingJobStatus = "Initializing" LabelingJobStatusIn_progress LabelingJobStatus = "InProgress" LabelingJobStatusCompleted LabelingJobStatus = "Completed" LabelingJobStatusFailed LabelingJobStatus = "Failed" LabelingJobStatusStopping LabelingJobStatus = "Stopping" LabelingJobStatusStopped LabelingJobStatus = "Stopped" )
Enum values for LabelingJobStatus
type LabelingJobStoppingConditions ¶
type LabelingJobStoppingConditions struct { // The maximum number of input data objects that should be labeled. MaxPercentageOfInputDatasetLabeled *int32 // The maximum number of objects that can be labeled by human workers. MaxHumanLabeledObjectCount *int32 }
A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling. Labeling jobs fail after 30 days with an appropriate client error message.
type LabelingJobSummary ¶
type LabelingJobSummary struct { // The date and time that the job was created (timestamp). // // This member is required. CreationTime *time.Time // The date and time that the job was last modified (timestamp). // // This member is required. LastModifiedTime *time.Time // The current status of the labeling job. // // This member is required. LabelingJobStatus LabelingJobStatus // If the LabelingJobStatus field is Failed, this field contains a description of // the error. FailureReason *string // The Amazon Resource Name (ARN) of the Lambda function used to consolidate the // annotations from individual workers into a label for a data object. For more // information, see Annotation Consolidation // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html). AnnotationConsolidationLambdaArn *string // Counts showing the progress of the labeling job. // // This member is required. LabelCounters *LabelCounters // Input configuration for the labeling job. InputConfig *LabelingJobInputConfig // The name of the labeling job. // // This member is required. LabelingJobName *string // The Amazon Resource Name (ARN) of a Lambda function. The function is run before // each data object is sent to a worker. // // This member is required. PreHumanTaskLambdaArn *string // The Amazon Resource Name (ARN) of the work team assigned to the job. // // This member is required. WorkteamArn *string // The Amazon Resource Name (ARN) assigned to the labeling job when it was created. // // This member is required. LabelingJobArn *string // The location of the output produced by the labeling job. LabelingJobOutput *LabelingJobOutput }
Provides summary information about a labeling job.
type ListCompilationJobsSortBy ¶
type ListCompilationJobsSortBy string
const ( ListCompilationJobsSortByName ListCompilationJobsSortBy = "Name" ListCompilationJobsSortByCreation_time ListCompilationJobsSortBy = "CreationTime" ListCompilationJobsSortByStatus ListCompilationJobsSortBy = "Status" )
Enum values for ListCompilationJobsSortBy
type ListLabelingJobsForWorkteamSortByOptions ¶
type ListLabelingJobsForWorkteamSortByOptions string
const ( ListLabelingJobsForWorkteamSortByOptionsCreation_time ListLabelingJobsForWorkteamSortByOptions = "CreationTime" )
Enum values for ListLabelingJobsForWorkteamSortByOptions
type ListWorkforcesSortByOptions ¶
type ListWorkforcesSortByOptions string
const ( ListWorkforcesSortByOptionsName ListWorkforcesSortByOptions = "Name" ListWorkforcesSortByOptionsCreatedate ListWorkforcesSortByOptions = "CreateDate" )
Enum values for ListWorkforcesSortByOptions
type ListWorkteamsSortByOptions ¶
type ListWorkteamsSortByOptions string
const ( ListWorkteamsSortByOptionsName ListWorkteamsSortByOptions = "Name" ListWorkteamsSortByOptionsCreatedate ListWorkteamsSortByOptions = "CreateDate" )
Enum values for ListWorkteamsSortByOptions
type MemberDefinition ¶
type MemberDefinition struct { // The Amazon Cognito user group that is part of the work team. CognitoMemberDefinition *CognitoMemberDefinition // A list user groups that exist in your OIDC Identity Provider (IdP). One to ten // groups can be used to create a single private work team. When you add a user // group to the list of Groups, you can add that user group to one or more private // work teams. If you add a user group to a private work team, all workers in that // user group are added to the work team. OidcMemberDefinition *OidcMemberDefinition }
Defines the Amazon Cognito user group that is part of a work team.
type MetricData ¶
type MetricData struct { // The name of the metric. MetricName *string // The date and time that the algorithm emitted the metric. Timestamp *time.Time // The value of the metric. Value *float32 }
The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.
type MetricDefinition ¶
type MetricDefinition struct { // The name of the metric. // // This member is required. Name *string // A regular expression that searches the output of a training job and gets the // value of the metric. For more information about using regular expressions to // define metrics, see Defining Objective Metrics // (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html). // // This member is required. Regex *string }
Specifies a metric that the training algorithm writes to stderr or stdout . Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.
type ModelArtifacts ¶
type ModelArtifacts struct { // The path of the S3 object that contains the model artifacts. For example, // s3://bucket-name/keynameprefix/model.tar.gz. // // This member is required. S3ModelArtifacts *string }
Provides information about the location that is configured for storing model artifacts. Model artifacts are the output that results from training a model, and typically consist of trained parameters, a model defintion that desribes how to compute inferences, and other metadata.
type ModelClientConfig ¶
type ModelClientConfig struct { // The timeout value in seconds for an invocation request. InvocationsTimeoutInSeconds *int32 // The maximum number of retries when invocation requests are failing. InvocationsMaxRetries *int32 }
Configures the timeout and maximum number of retries for processing a transform job invocation.
type ModelPackageContainerDefinition ¶
type ModelPackageContainerDefinition struct { // The AWS Marketplace product ID of the model package. ProductId *string // The Amazon S3 path where the model artifacts, which result from model training, // are stored. This path must point to a single gzip compressed tar archive // (.tar.gz suffix). ModelDataUrl *string // The DNS host name for the Docker container. ContainerHostname *string // The Amazon EC2 Container Registry (Amazon ECR) path where inference code is // stored. If you are using your own custom algorithm instead of an algorithm // provided by Amazon SageMaker, the inference code must meet Amazon SageMaker // requirements. Amazon SageMaker supports both registry/repository[:tag] and // registry/repository[@digest] image path formats. For more information, see Using // Your Own Algorithms with Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html). // // This member is required. Image *string // An MD5 hash of the training algorithm that identifies the Docker image used for // training. ImageDigest *string }
Describes the Docker container for the model package.
type ModelPackageSortBy ¶
type ModelPackageSortBy string
const ( ModelPackageSortByName ModelPackageSortBy = "Name" ModelPackageSortByCreation_time ModelPackageSortBy = "CreationTime" )
Enum values for ModelPackageSortBy
type ModelPackageStatus ¶
type ModelPackageStatus string
const ( ModelPackageStatusPending ModelPackageStatus = "Pending" ModelPackageStatusIn_progress ModelPackageStatus = "InProgress" ModelPackageStatusCompleted ModelPackageStatus = "Completed" ModelPackageStatusFailed ModelPackageStatus = "Failed" ModelPackageStatusDeleting ModelPackageStatus = "Deleting" )
Enum values for ModelPackageStatus
type ModelPackageStatusDetails ¶
type ModelPackageStatusDetails struct { // The validation status of the model package. // // This member is required. ValidationStatuses []*ModelPackageStatusItem // The status of the scan of the Docker image container for the model package. ImageScanStatuses []*ModelPackageStatusItem }
Specifies the validation and image scan statuses of the model package.
type ModelPackageStatusItem ¶
type ModelPackageStatusItem struct { // if the overall status is Failed, the reason for the failure. FailureReason *string // The name of the model package for which the overall status is being reported. // // This member is required. Name *string // The current status. // // This member is required. Status DetailedModelPackageStatus }
Represents the overall status of a model package.
type ModelPackageSummary ¶
type ModelPackageSummary struct { // The name of the model package. // // This member is required. ModelPackageName *string // The Amazon Resource Name (ARN) of the model package. // // This member is required. ModelPackageArn *string // A brief description of the model package. ModelPackageDescription *string // The overall status of the model package. // // This member is required. ModelPackageStatus ModelPackageStatus // A timestamp that shows when the model package was created. // // This member is required. CreationTime *time.Time }
Provides summary information about a model package.
type ModelPackageValidationProfile ¶
type ModelPackageValidationProfile struct { // The TransformJobDefinition object that describes the transform job used for the // validation of the model package. // // This member is required. TransformJobDefinition *TransformJobDefinition // The name of the profile for the model package. // // This member is required. ProfileName *string }
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package. The data provided in the validation profile is made available to your buyers on AWS Marketplace.
type ModelPackageValidationSpecification ¶
type ModelPackageValidationSpecification struct { // An array of ModelPackageValidationProfile objects, each of which specifies a // batch transform job that Amazon SageMaker runs to validate your model package. // // This member is required. ValidationProfiles []*ModelPackageValidationProfile // The IAM roles to be used for the validation of the model package. // // This member is required. ValidationRole *string }
Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.
type ModelSortKey ¶
type ModelSortKey string
const ( ModelSortKeyName ModelSortKey = "Name" ModelSortKeyCreationtime ModelSortKey = "CreationTime" )
Enum values for ModelSortKey
type ModelSummary ¶
type ModelSummary struct { // A timestamp that indicates when the model was created. // // This member is required. CreationTime *time.Time // The Amazon Resource Name (ARN) of the model. // // This member is required. ModelArn *string // The name of the model that you want a summary for. // // This member is required. ModelName *string }
Provides summary information about a model.
type MonitoringAppSpecification ¶
type MonitoringAppSpecification struct { // The container image to be run by the monitoring job. // // This member is required. ImageUri *string // Specifies the entrypoint for a container used to run the monitoring job. ContainerEntrypoint []*string // An Amazon S3 URI to a script that is called after analysis has been performed. // Applicable only for the built-in (first party) containers. PostAnalyticsProcessorSourceUri *string // An array of arguments for the container used to run the monitoring job. ContainerArguments []*string // An Amazon S3 URI to a script that is called per row prior to running analysis. // It can base64 decode the payload and convert it into a flatted json so that the // built-in container can use the converted data. Applicable only for the built-in // (first party) containers. RecordPreprocessorSourceUri *string }
Container image configuration object for the monitoring job.
type MonitoringBaselineConfig ¶
type MonitoringBaselineConfig struct { // The baseline statistics file in Amazon S3 that the current monitoring job should // be validated against. StatisticsResource *MonitoringStatisticsResource // The baseline constraint file in Amazon S3 that the current monitoring job should // validated against. ConstraintsResource *MonitoringConstraintsResource }
Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.
type MonitoringClusterConfig ¶
type MonitoringClusterConfig struct { // The number of ML compute instances to use in the model monitoring job. For // distributed processing jobs, specify a value greater than 1. The default value // is 1. // // This member is required. InstanceCount *int32 // The ML compute instance type for the processing job. // // This member is required. InstanceType ProcessingInstanceType // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt data on the storage volume attached to the ML compute instance(s) that // run the model monitoring job. VolumeKmsKeyId *string // The size of the ML storage volume, in gigabytes, that you want to provision. You // must specify sufficient ML storage for your scenario. // // This member is required. VolumeSizeInGB *int32 }
Configuration for the cluster used to run model monitoring jobs.
type MonitoringConstraintsResource ¶
type MonitoringConstraintsResource struct { // The Amazon S3 URI for the constraints resource. S3Uri *string }
The constraints resource for a monitoring job.
type MonitoringExecutionSortKey ¶
type MonitoringExecutionSortKey string
const ( MonitoringExecutionSortKeyCreation_time MonitoringExecutionSortKey = "CreationTime" MonitoringExecutionSortKeyScheduled_time MonitoringExecutionSortKey = "ScheduledTime" MonitoringExecutionSortKeyStatus MonitoringExecutionSortKey = "Status" )
Enum values for MonitoringExecutionSortKey
type MonitoringExecutionSummary ¶
type MonitoringExecutionSummary struct { // The time the monitoring job was scheduled. // // This member is required. ScheduledTime *time.Time // The Amazon Resource Name (ARN) of the monitoring job. ProcessingJobArn *string // The status of the monitoring job. // // This member is required. MonitoringExecutionStatus ExecutionStatus // A timestamp that indicates the last time the monitoring job was modified. // // This member is required. LastModifiedTime *time.Time // The time at which the monitoring job was created. // // This member is required. CreationTime *time.Time // The name of the monitoring schedule. // // This member is required. MonitoringScheduleName *string // Contains the reason a monitoring job failed, if it failed. FailureReason *string // The name of teh endpoint used to run the monitoring job. EndpointName *string }
Summary of information about the last monitoring job to run.
type MonitoringInput ¶
type MonitoringInput struct { // The endpoint for a monitoring job. // // This member is required. EndpointInput *EndpointInput }
The inputs for a monitoring job.
type MonitoringJobDefinition ¶
type MonitoringJobDefinition struct { // The array of outputs from the monitoring job to be uploaded to Amazon Simple // Storage Service (Amazon S3). // // This member is required. MonitoringOutputConfig *MonitoringOutputConfig // Identifies the resources, ML compute instances, and ML storage volumes to deploy // for a monitoring job. In distributed processing, you specify more than one // instance. // // This member is required. MonitoringResources *MonitoringResources // Configures the monitoring job to run a specified Docker container image. // // This member is required. MonitoringAppSpecification *MonitoringAppSpecification // The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume // to perform tasks on your behalf. // // This member is required. RoleArn *string // Sets the environment variables in the Docker container. Environment map[string]*string // Baseline configuration used to validate that the data conforms to the specified // constraints and statistics BaselineConfig *MonitoringBaselineConfig // Specifies a time limit for how long the monitoring job is allowed to run. StoppingCondition *MonitoringStoppingCondition // The array of inputs for the monitoring job. Currently we support monitoring an // Amazon SageMaker Endpoint. // // This member is required. MonitoringInputs []*MonitoringInput // Specifies networking options for an monitoring job. NetworkConfig *NetworkConfig }
Defines the monitoring job.
type MonitoringOutput ¶
type MonitoringOutput struct { // The Amazon S3 storage location where the results of a monitoring job are saved. // // This member is required. S3Output *MonitoringS3Output }
The output object for a monitoring job.
type MonitoringOutputConfig ¶
type MonitoringOutputConfig struct { // Monitoring outputs for monitoring jobs. This is where the output of the periodic // monitoring jobs is uploaded. // // This member is required. MonitoringOutputs []*MonitoringOutput // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt the model artifacts at rest using Amazon S3 server-side encryption. KmsKeyId *string }
The output configuration for monitoring jobs.
type MonitoringResources ¶
type MonitoringResources struct { // The configuration for the cluster resources used to run the processing job. // // This member is required. ClusterConfig *MonitoringClusterConfig }
Identifies the resources to deploy for a monitoring job.
type MonitoringS3Output ¶
type MonitoringS3Output struct { // The local path to the Amazon S3 storage location where Amazon SageMaker saves // the results of a monitoring job. LocalPath is an absolute path for the output // data. // // This member is required. LocalPath *string // Whether to upload the results of the monitoring job continuously or after the // job completes. S3UploadMode ProcessingS3UploadMode // A URI that identifies the Amazon S3 storage location where Amazon SageMaker // saves the results of a monitoring job. // // This member is required. S3Uri *string }
Information about where and how you want to store the results of a monitoring job.
type MonitoringScheduleConfig ¶
type MonitoringScheduleConfig struct { // Defines the monitoring job. // // This member is required. MonitoringJobDefinition *MonitoringJobDefinition // Configures the monitoring schedule. ScheduleConfig *ScheduleConfig }
Configures the monitoring schedule and defines the monitoring job.
type MonitoringScheduleSortKey ¶
type MonitoringScheduleSortKey string
const ( MonitoringScheduleSortKeyName MonitoringScheduleSortKey = "Name" MonitoringScheduleSortKeyCreation_time MonitoringScheduleSortKey = "CreationTime" MonitoringScheduleSortKeyStatus MonitoringScheduleSortKey = "Status" )
Enum values for MonitoringScheduleSortKey
type MonitoringScheduleSummary ¶
type MonitoringScheduleSummary struct { // The last time the monitoring schedule was modified. // // This member is required. LastModifiedTime *time.Time // The creation time of the monitoring schedule. // // This member is required. CreationTime *time.Time // The name of the endpoint using the monitoring schedule. EndpointName *string // The status of the monitoring schedule. // // This member is required. MonitoringScheduleStatus ScheduleStatus // The name of the monitoring schedule. // // This member is required. MonitoringScheduleName *string // The Amazon Resource Name (ARN) of the monitoring schedule. // // This member is required. MonitoringScheduleArn *string }
Summarizes the monitoring schedule.
type MonitoringStatisticsResource ¶
type MonitoringStatisticsResource struct { // The Amazon S3 URI for the statistics resource. S3Uri *string }
The statistics resource for a monitoring job.
type MonitoringStoppingCondition ¶
type MonitoringStoppingCondition struct { // The maximum runtime allowed in seconds. // // This member is required. MaxRuntimeInSeconds *int32 }
A time limit for how long the monitoring job is allowed to run before stopping.
type NestedFilters ¶
type NestedFilters struct { // A list of filters. Each filter acts on a property. Filters must contain at least // one Filters value. For example, a NestedFilters call might include a filter on // the PropertyName parameter of the InputDataConfig property: // InputDataConfig.DataSource.S3DataSource.S3Uri. // // This member is required. Filters []*Filter // The name of the property to use in the nested filters. The value must match a // listed property name, such as InputDataConfig. // // This member is required. NestedPropertyName *string }
A list of nested Filter () objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search () API. For example, to filter on a training job's InputDataConfig property with a specific channel name and S3Uri prefix, define the following filters:
*
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
* '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
type NetworkConfig ¶
type NetworkConfig struct { // Whether to allow inbound and outbound network calls to and from the containers // used for the processing job. EnableNetworkIsolation *bool // Whether to encrypt all communications between distributed processing jobs. // Choose True to encrypt communications. Encryption provides greater security for // distributed processing jobs, but the processing might take longer. EnableInterContainerTrafficEncryption *bool // Specifies a VPC that your training jobs and hosted models have access to. // Control access to and from your training and model containers by configuring the // VPC. For more information, see Protect Endpoints by Using an Amazon Virtual // Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html) // and Protect Training Jobs by Using an Amazon Virtual Private Cloud // (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html). VpcConfig *VpcConfig }
Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
type NotebookInstanceAcceleratorType ¶
type NotebookInstanceAcceleratorType string
const ( NotebookInstanceAcceleratorTypeMl_eia1_medium NotebookInstanceAcceleratorType = "ml.eia1.medium" NotebookInstanceAcceleratorTypeMl_eia1_large NotebookInstanceAcceleratorType = "ml.eia1.large" NotebookInstanceAcceleratorTypeMl_eia1_xlarge NotebookInstanceAcceleratorType = "ml.eia1.xlarge" NotebookInstanceAcceleratorTypeMl_eia2_medium NotebookInstanceAcceleratorType = "ml.eia2.medium" NotebookInstanceAcceleratorTypeMl_eia2_large NotebookInstanceAcceleratorType = "ml.eia2.large" NotebookInstanceAcceleratorTypeMl_eia2_xlarge NotebookInstanceAcceleratorType = "ml.eia2.xlarge" )
Enum values for NotebookInstanceAcceleratorType
type NotebookInstanceLifecycleConfigSortKey ¶
type NotebookInstanceLifecycleConfigSortKey string
const ( NotebookInstanceLifecycleConfigSortKeyName NotebookInstanceLifecycleConfigSortKey = "Name" NotebookInstanceLifecycleConfigSortKeyCreation_time NotebookInstanceLifecycleConfigSortKey = "CreationTime" NotebookInstanceLifecycleConfigSortKeyLast_modified_time NotebookInstanceLifecycleConfigSortKey = "LastModifiedTime" )
Enum values for NotebookInstanceLifecycleConfigSortKey
type NotebookInstanceLifecycleConfigSortOrder ¶
type NotebookInstanceLifecycleConfigSortOrder string
const ( NotebookInstanceLifecycleConfigSortOrderAscending NotebookInstanceLifecycleConfigSortOrder = "Ascending" NotebookInstanceLifecycleConfigSortOrderDescending NotebookInstanceLifecycleConfigSortOrder = "Descending" )
Enum values for NotebookInstanceLifecycleConfigSortOrder
type NotebookInstanceLifecycleConfigSummary ¶
type NotebookInstanceLifecycleConfigSummary struct { // The name of the lifecycle configuration. // // This member is required. NotebookInstanceLifecycleConfigName *string // The Amazon Resource Name (ARN) of the lifecycle configuration. // // This member is required. NotebookInstanceLifecycleConfigArn *string // A timestamp that tells when the lifecycle configuration was last modified. LastModifiedTime *time.Time // A timestamp that tells when the lifecycle configuration was created. CreationTime *time.Time }
Provides a summary of a notebook instance lifecycle configuration.
type NotebookInstanceLifecycleHook ¶
type NotebookInstanceLifecycleHook struct { // A base64-encoded string that contains a shell script for a notebook instance // lifecycle configuration. Content *string }
Contains the notebook instance lifecycle configuration script. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html).
type NotebookInstanceSortKey ¶
type NotebookInstanceSortKey string
const ( NotebookInstanceSortKeyName NotebookInstanceSortKey = "Name" NotebookInstanceSortKeyCreation_time NotebookInstanceSortKey = "CreationTime" NotebookInstanceSortKeyStatus NotebookInstanceSortKey = "Status" )
Enum values for NotebookInstanceSortKey
type NotebookInstanceSortOrder ¶
type NotebookInstanceSortOrder string
const ( NotebookInstanceSortOrderAscending NotebookInstanceSortOrder = "Ascending" NotebookInstanceSortOrderDescending NotebookInstanceSortOrder = "Descending" )
Enum values for NotebookInstanceSortOrder
type NotebookInstanceStatus ¶
type NotebookInstanceStatus string
const ( NotebookInstanceStatusPending NotebookInstanceStatus = "Pending" NotebookInstanceStatusInservice NotebookInstanceStatus = "InService" NotebookInstanceStatusStopping NotebookInstanceStatus = "Stopping" NotebookInstanceStatusStopped NotebookInstanceStatus = "Stopped" NotebookInstanceStatusFailed NotebookInstanceStatus = "Failed" NotebookInstanceStatusDeleting NotebookInstanceStatus = "Deleting" NotebookInstanceStatusUpdating NotebookInstanceStatus = "Updating" )
Enum values for NotebookInstanceStatus
type NotebookInstanceSummary ¶
type NotebookInstanceSummary struct { // A timestamp that shows when the notebook instance was created. CreationTime *time.Time // The Git repository associated with the notebook instance as its default code // repository. This can be either the name of a Git repository stored as a resource // in your account, or the URL of a Git repository in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. When you open a notebook instance, it opens in the // directory that contains this repository. For more information, see Associating // Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). DefaultCodeRepository *string // An array of up to three Git repositories associated with the notebook instance. // These can be either the names of Git repositories stored as resources in your // account, or the URL of Git repositories in AWS CodeCommit // (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html) or in any // other Git repository. These repositories are cloned at the same level as the // default repository of your notebook instance. For more information, see // Associating Git Repositories with Amazon SageMaker Notebook Instances // (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html). AdditionalCodeRepositories []*string // A timestamp that shows when the notebook instance was last modified. LastModifiedTime *time.Time // The Amazon Resource Name (ARN) of the notebook instance. // // This member is required. NotebookInstanceArn *string // The status of the notebook instance. NotebookInstanceStatus NotebookInstanceStatus // The name of a notebook instance lifecycle configuration associated with this // notebook instance. For information about notebook instance lifestyle // configurations, see Step 2.1: (Optional) Customize a Notebook Instance // (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html). NotebookInstanceLifecycleConfigName *string // The name of the notebook instance that you want a summary for. // // This member is required. NotebookInstanceName *string // The type of ML compute instance that the notebook instance is running on. InstanceType InstanceType // The URL that you use to connect to the Jupyter instance running in your notebook // instance. Url *string }
Provides summary information for an Amazon SageMaker notebook instance.
type NotebookOutputOption ¶
type NotebookOutputOption string
const ( NotebookOutputOptionAllowed NotebookOutputOption = "Allowed" NotebookOutputOptionDisabled NotebookOutputOption = "Disabled" )
Enum values for NotebookOutputOption
type NotificationConfiguration ¶
type NotificationConfiguration struct { // The ARN for the SNS topic to which notifications should be published. NotificationTopicArn *string }
Configures SNS notifications of available or expiring work items for work teams.
type ObjectiveStatus ¶
type ObjectiveStatus string
const ( ObjectiveStatusSucceeded ObjectiveStatus = "Succeeded" ObjectiveStatusPending ObjectiveStatus = "Pending" ObjectiveStatusFailed ObjectiveStatus = "Failed" )
Enum values for ObjectiveStatus
type ObjectiveStatusCounters ¶
type ObjectiveStatusCounters struct { // The number of training jobs that are in progress and pending evaluation of their // final objective metric. Pending *int32 // The number of training jobs whose final objective metric was not evaluated and // used in the hyperparameter tuning process. This typically occurs when the // training job failed or did not emit an objective metric. Failed *int32 // The number of training jobs whose final objective metric was evaluated by the // hyperparameter tuning job and used in the hyperparameter tuning process. Succeeded *int32 }
Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.
type OidcConfig ¶
type OidcConfig struct { // The OIDC IdP logout endpoint used to configure your private workforce. // // This member is required. LogoutEndpoint *string // The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private // workforce. // // This member is required. JwksUri *string // The OIDC IdP token endpoint used to configure your private workforce. // // This member is required. TokenEndpoint *string // The OIDC IdP authorization endpoint used to configure your private workforce. // // This member is required. AuthorizationEndpoint *string // The OIDC IdP user information endpoint used to configure your private workforce. // // This member is required. UserInfoEndpoint *string // The OIDC IdP client ID used to configure your private workforce. // // This member is required. ClientId *string // The OIDC IdP issuer used to configure your private workforce. // // This member is required. Issuer *string // The OIDC IdP client secret used to configure your private workforce. // // This member is required. ClientSecret *string }
Use this parameter to configure your OIDC Identity Provider (IdP).
type OidcConfigForResponse ¶
type OidcConfigForResponse struct { // The OIDC IdP token endpoint used to configure your private workforce. TokenEndpoint *string // The OIDC IdP logout endpoint used to configure your private workforce. LogoutEndpoint *string // The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private // workforce. JwksUri *string // The OIDC IdP user information endpoint used to configure your private workforce. UserInfoEndpoint *string // The OIDC IdP client ID used to configure your private workforce. ClientId *string // The OIDC IdP issuer used to configure your private workforce. Issuer *string // The OIDC IdP authorization endpoint used to configure your private workforce. AuthorizationEndpoint *string }
Your Amazon Cognito workforce configuration.
type OidcMemberDefinition ¶
type OidcMemberDefinition struct { // A list of comma seperated strings that identifies user groups in your OIDC IdP. // Each user group is made up of a group of private workers. // // This member is required. Groups []*string }
A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.
type Operator ¶
type Operator string
const ( OperatorEquals Operator = "Equals" OperatorNot_equals Operator = "NotEquals" OperatorGreater_than Operator = "GreaterThan" OperatorGreater_than_or_equal_to Operator = "GreaterThanOrEqualTo" OperatorLess_than Operator = "LessThan" OperatorLess_than_or_equal_to Operator = "LessThanOrEqualTo" OperatorContains Operator = "Contains" OperatorExists Operator = "Exists" OperatorNot_exists Operator = "NotExists" OperatorIn Operator = "In" )
Enum values for Operator
type OrderKey ¶
type OrderKey string
Enum values for OrderKey
type OutputConfig ¶
type OutputConfig struct { // Specifies additional parameters for compiler options in JSON format. The // compiler options are TargetPlatform specific. It is required for NVIDIA // accelerators and highly recommended for CPU compliations. For any other cases, // it is optional to specify CompilerOptions. // // * CPU: Compilation for CPU // supports the following compiler options. // // * mcpu: CPU // micro-architecture. For example, {'mcpu': 'skylake-avx512'} // // * mattr: // CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} // // * ARM: Details of // ARM CPU compilations. // // * NEON: NEON is an implementation of the Advanced // SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} // to the compiler options if compiling for ARM 32-bit platform with the NEON // support. // // * NVIDIA: Compilation for NVIDIA GPU supports the following // compiler options. // // * gpu_code: Specifies the targeted architecture. // // // * trt-ver: Specifies the TensorRT versions in x.y.z. format. // // * // cuda-ver: Specifies the CUDA version in x.y format. // // For example, // {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} // // * ANDROID: // Compilation for the Android OS supports the following compiler options: // // // * ANDROID_PLATFORM: Specifies the Android API levels. Available levels range // from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. // // * mattr: Add // {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform // with NEON support. CompilerOptions *string // Identifies the S3 bucket where you want Amazon SageMaker to store the model // artifacts. For example, s3://bucket-name/key-name-prefix. // // This member is required. S3OutputLocation *string // Contains information about a target platform that you want your model to run on, // such as OS, architecture, and accelerators. It is an alternative of // TargetDevice. The following examples show how to configure the TargetPlatform // and CompilerOptions JSON strings for popular target platforms: // // * Raspberry // Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, // "CompilerOptions": {'mattr': ['+neon']} // // * Jetson TX2 "TargetPlatform": // {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": // {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} // // * EC2 // m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", // "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} // // * // RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": // "MALI"} // // * ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": // "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} // // // * ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, // "CompilerOptions": {'ANDROID_PLATFORM': 29} TargetPlatform *TargetPlatform // Identifies the target device or the machine learning instance that you want to // run your model on after the compilation has completed. Alternatively, you can // specify OS, architecture, and accelerator using TargetPlatform () fields. It can // be used instead of TargetPlatform. TargetDevice TargetDevice }
Contains information about the output location for the compiled model and the target device that the model runs on. TargetDevice and TargetPlatform are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from the TargetDevice list, use TargetPlatform to describe the platform of your edge device and CompilerOptions if there are specific settings that are required or recommended to use for particular TargetPlatform.
type OutputDataConfig ¶
type OutputDataConfig struct { // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt the model artifacts at rest using Amazon S3 server-side encryption. The // KmsKeyId can be any of the following formats: // // * // KMS Key ID // "1234abcd-12ab-34cd-56ef-1234567890ab" // // * // Amazon Resource Name (ARN) of a // KMS Key // "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // // // * // KMS Key Alias "alias/ExampleAlias" // // * // Amazon Resource Name (ARN) of // a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" // // // <p>If you use a KMS key ID or an alias of your master key, the Amazon SageMaker // execution role must include permissions to call <code>kms:Encrypt</code>. If you // don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon // S3 for your role's account. Amazon SageMaker uses server-side encryption with // KMS-managed keys for <code>OutputDataConfig</code>. If you use a bucket policy // with an <code>s3:PutObject</code> permission that only allows objects with // server-side encryption, set the condition key of // <code>s3:x-amz-server-side-encryption</code> to <code>"aws:kms"</code>. For more // information, see <a // href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed // Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> // </p> <p>The KMS key policy must grant permission to the IAM role that you // specify in your <code>CreateTrainingJob</code>, <code>CreateTransformJob</code>, // or <code>CreateHyperParameterTuningJob</code> requests. For more information, // see <a // href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using // Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer // Guide</i>.</p> KmsKeyId *string // Identifies the S3 path where you want Amazon SageMaker to store the model // artifacts. For example, s3://bucket-name/key-name-prefix. // // This member is required. S3OutputPath *string }
Provides information about how to store model training results (model artifacts).
type ParameterRange ¶
type ParameterRange struct { // A IntegerParameterRangeSpecification object that defines the possible values for // an integer hyperparameter. IntegerParameterRangeSpecification *IntegerParameterRangeSpecification // A CategoricalParameterRangeSpecification object that defines the possible values // for a categorical hyperparameter. CategoricalParameterRangeSpecification *CategoricalParameterRangeSpecification // A ContinuousParameterRangeSpecification object that defines the possible values // for a continuous hyperparameter. ContinuousParameterRangeSpecification *ContinuousParameterRangeSpecification }
Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.
type ParameterRanges ¶
type ParameterRanges struct { // The array of CategoricalParameterRange () objects that specify ranges of // categorical hyperparameters that a hyperparameter tuning job searches. CategoricalParameterRanges []*CategoricalParameterRange // The array of ContinuousParameterRange () objects that specify ranges of // continuous hyperparameters that a hyperparameter tuning job searches. ContinuousParameterRanges []*ContinuousParameterRange // The array of IntegerParameterRange () objects that specify ranges of integer // hyperparameters that a hyperparameter tuning job searches. IntegerParameterRanges []*IntegerParameterRange }
Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job. You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.
type ParameterType ¶
type ParameterType string
const ( ParameterTypeInteger ParameterType = "Integer" ParameterTypeContinuous ParameterType = "Continuous" ParameterTypeCategorical ParameterType = "Categorical" ParameterTypeFree_text ParameterType = "FreeText" )
Enum values for ParameterType
type Parent ¶
type Parent struct { // The name of the experiment. ExperimentName *string // The name of the trial. TrialName *string }
The trial that a trial component is associated with and the experiment the trial is part of. A component might not be associated with a trial. A component can be associated with multiple trials.
type ParentHyperParameterTuningJob ¶
type ParentHyperParameterTuningJob struct { // The name of the hyperparameter tuning job to be used as a starting point for a // new hyperparameter tuning job. HyperParameterTuningJobName *string }
A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
type ProblemType ¶
type ProblemType string
const ( ProblemTypeBinary_classification ProblemType = "BinaryClassification" ProblemTypeMulticlass_classification ProblemType = "MulticlassClassification" ProblemTypeRegression ProblemType = "Regression" )
Enum values for ProblemType
type ProcessingClusterConfig ¶
type ProcessingClusterConfig struct { // The number of ML compute instances to use in the processing job. For distributed // processing jobs, specify a value greater than 1. The default value is 1. // // This member is required. InstanceCount *int32 // The size of the ML storage volume in gigabytes that you want to provision. You // must specify sufficient ML storage for your scenario. // // This member is required. VolumeSizeInGB *int32 // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt data on the storage volume attached to the ML compute instance(s) that // run the processing job. VolumeKmsKeyId *string // The ML compute instance type for the processing job. // // This member is required. InstanceType ProcessingInstanceType }
Configuration for the cluster used to run a processing job.
type ProcessingInput ¶
type ProcessingInput struct { // The name of the inputs for the processing job. // // This member is required. InputName *string // The S3 inputs for the processing job. // // This member is required. S3Input *ProcessingS3Input }
The inputs for a processing job.
type ProcessingInstanceType ¶
type ProcessingInstanceType string
const ( ProcessingInstanceTypeMl_t3_medium ProcessingInstanceType = "ml.t3.medium" ProcessingInstanceTypeMl_t3_large ProcessingInstanceType = "ml.t3.large" ProcessingInstanceTypeMl_t3_xlarge ProcessingInstanceType = "ml.t3.xlarge" ProcessingInstanceTypeMl_t3_2xlarge ProcessingInstanceType = "ml.t3.2xlarge" ProcessingInstanceTypeMl_m4_xlarge ProcessingInstanceType = "ml.m4.xlarge" ProcessingInstanceTypeMl_m4_2xlarge ProcessingInstanceType = "ml.m4.2xlarge" ProcessingInstanceTypeMl_m4_4xlarge ProcessingInstanceType = "ml.m4.4xlarge" ProcessingInstanceTypeMl_m4_10xlarge ProcessingInstanceType = "ml.m4.10xlarge" ProcessingInstanceTypeMl_m4_16xlarge ProcessingInstanceType = "ml.m4.16xlarge" ProcessingInstanceTypeMl_c4_xlarge ProcessingInstanceType = "ml.c4.xlarge" ProcessingInstanceTypeMl_c4_2xlarge ProcessingInstanceType = "ml.c4.2xlarge" ProcessingInstanceTypeMl_c4_4xlarge ProcessingInstanceType = "ml.c4.4xlarge" ProcessingInstanceTypeMl_c4_8xlarge ProcessingInstanceType = "ml.c4.8xlarge" ProcessingInstanceTypeMl_p2_xlarge ProcessingInstanceType = "ml.p2.xlarge" ProcessingInstanceTypeMl_p2_8xlarge ProcessingInstanceType = "ml.p2.8xlarge" ProcessingInstanceTypeMl_p2_16xlarge ProcessingInstanceType = "ml.p2.16xlarge" ProcessingInstanceTypeMl_p3_2xlarge ProcessingInstanceType = "ml.p3.2xlarge" ProcessingInstanceTypeMl_p3_8xlarge ProcessingInstanceType = "ml.p3.8xlarge" ProcessingInstanceTypeMl_p3_16xlarge ProcessingInstanceType = "ml.p3.16xlarge" ProcessingInstanceTypeMl_c5_xlarge ProcessingInstanceType = "ml.c5.xlarge" ProcessingInstanceTypeMl_c5_2xlarge ProcessingInstanceType = "ml.c5.2xlarge" ProcessingInstanceTypeMl_c5_4xlarge ProcessingInstanceType = "ml.c5.4xlarge" ProcessingInstanceTypeMl_c5_9xlarge ProcessingInstanceType = "ml.c5.9xlarge" ProcessingInstanceTypeMl_c5_18xlarge ProcessingInstanceType = "ml.c5.18xlarge" ProcessingInstanceTypeMl_m5_large ProcessingInstanceType = "ml.m5.large" ProcessingInstanceTypeMl_m5_xlarge ProcessingInstanceType = "ml.m5.xlarge" ProcessingInstanceTypeMl_m5_2xlarge ProcessingInstanceType = "ml.m5.2xlarge" ProcessingInstanceTypeMl_m5_4xlarge ProcessingInstanceType = "ml.m5.4xlarge" ProcessingInstanceTypeMl_m5_12xlarge ProcessingInstanceType = "ml.m5.12xlarge" ProcessingInstanceTypeMl_m5_24xlarge ProcessingInstanceType = "ml.m5.24xlarge" ProcessingInstanceTypeMl_r5_large ProcessingInstanceType = "ml.r5.large" ProcessingInstanceTypeMl_r5_xlarge ProcessingInstanceType = "ml.r5.xlarge" ProcessingInstanceTypeMl_r5_2xlarge ProcessingInstanceType = "ml.r5.2xlarge" ProcessingInstanceTypeMl_r5_4xlarge ProcessingInstanceType = "ml.r5.4xlarge" ProcessingInstanceTypeMl_r5_8xlarge ProcessingInstanceType = "ml.r5.8xlarge" ProcessingInstanceTypeMl_r5_12xlarge ProcessingInstanceType = "ml.r5.12xlarge" ProcessingInstanceTypeMl_r5_16xlarge ProcessingInstanceType = "ml.r5.16xlarge" ProcessingInstanceTypeMl_r5_24xlarge ProcessingInstanceType = "ml.r5.24xlarge" )
Enum values for ProcessingInstanceType
type ProcessingJob ¶
type ProcessingJob struct { // For each input, data is downloaded from S3 into the processing container before // the processing job begins running if "S3InputMode" is set to File. ProcessingInputs []*ProcessingInput // The name of the processing job. ProcessingJobName *string // The ARN of the role used to create the processing job. RoleArn *string // The output configuration for the processing job. ProcessingOutputConfig *ProcessingOutputConfig // The ARN of the training job associated with this processing job. TrainingJobArn *string // Networking options for a job, such as network traffic encryption between // containers, whether to allow inbound and outbound network calls to and from // containers, and the VPC subnets and security groups to use for VPC-enabled jobs. NetworkConfig *NetworkConfig // The time that the processing job ended. ProcessingEndTime *time.Time // The ARN of the processing job. ProcessingJobArn *string // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *ExperimentConfig // The time that the processing job started. ProcessingStartTime *time.Time // The ARN of a monitoring schedule for an endpoint associated with this processing // job. MonitoringScheduleArn *string // An array of key-value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL) // in the AWS Billing and Cost Management User Guide. Tags []*Tag // A string, up to one KB in size, that contains the reason a processing job // failed, if it failed. FailureReason *string // The Amazon Resource Name (ARN) of the AutoML job associated with this processing // job. AutoMLJobArn *string // Identifies the resources, ML compute instances, and ML storage volumes to deploy // for a processing job. In distributed training, you specify more than one // instance. ProcessingResources *ProcessingResources // A string, up to one KB in size, that contains metadata from the processing // container when the processing job exits. ExitMessage *string // The status of the processing job. ProcessingJobStatus ProcessingJobStatus // The time the processing job was last modified. LastModifiedTime *time.Time // The time the processing job was created. CreationTime *time.Time // Sets the environment variables in the Docker container. Environment map[string]*string // Configuration to run a processing job in a specified container image. AppSpecification *AppSpecification // Specifies a time limit for how long the processing job is allowed to run. StoppingCondition *ProcessingStoppingCondition }
An Amazon SageMaker processing job that is used to analyze data and evaluate models. For more information, see Process Data and Evaluate Models (https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html).
type ProcessingJobStatus ¶
type ProcessingJobStatus string
const ( ProcessingJobStatusIn_progress ProcessingJobStatus = "InProgress" ProcessingJobStatusCompleted ProcessingJobStatus = "Completed" ProcessingJobStatusFailed ProcessingJobStatus = "Failed" ProcessingJobStatusStopping ProcessingJobStatus = "Stopping" ProcessingJobStatusStopped ProcessingJobStatus = "Stopped" )
Enum values for ProcessingJobStatus
type ProcessingJobSummary ¶
type ProcessingJobSummary struct { // A timestamp that indicates the last time the processing job was modified. LastModifiedTime *time.Time // The time at which the processing job was created. // // This member is required. CreationTime *time.Time // The status of the processing job. // // This member is required. ProcessingJobStatus ProcessingJobStatus // The time at which the processing job completed. ProcessingEndTime *time.Time // An optional string, up to one KB in size, that contains metadata from the // processing container when the processing job exits. ExitMessage *string // The Amazon Resource Name (ARN) of the processing job.. // // This member is required. ProcessingJobArn *string // The name of the processing job. // // This member is required. ProcessingJobName *string // A string, up to one KB in size, that contains the reason a processing job // failed, if it failed. FailureReason *string }
Summary of information about a processing job.
type ProcessingOutput ¶
type ProcessingOutput struct { // The name for the processing job output. // // This member is required. OutputName *string // Configuration for processing job outputs in Amazon S3. // // This member is required. S3Output *ProcessingS3Output }
Describes the results of a processing job.
type ProcessingOutputConfig ¶
type ProcessingOutputConfig struct { // Output configuration information for a processing job. // // This member is required. Outputs []*ProcessingOutput // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a // KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to // all outputs. KmsKeyId *string }
The output configuration for the processing job.
type ProcessingResources ¶
type ProcessingResources struct { // The configuration for the resources in a cluster used to run the processing job. // // This member is required. ClusterConfig *ProcessingClusterConfig }
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
type ProcessingS3CompressionType ¶
type ProcessingS3CompressionType string
const ( ProcessingS3CompressionTypeNone ProcessingS3CompressionType = "None" ProcessingS3CompressionTypeGzip ProcessingS3CompressionType = "Gzip" )
Enum values for ProcessingS3CompressionType
type ProcessingS3DataDistributionType ¶
type ProcessingS3DataDistributionType string
const ( ProcessingS3DataDistributionTypeFullyreplicated ProcessingS3DataDistributionType = "FullyReplicated" ProcessingS3DataDistributionTypeShardedbys3key ProcessingS3DataDistributionType = "ShardedByS3Key" )
Enum values for ProcessingS3DataDistributionType
type ProcessingS3DataType ¶
type ProcessingS3DataType string
const ( ProcessingS3DataTypeManifest_file ProcessingS3DataType = "ManifestFile" ProcessingS3DataTypeS3_prefix ProcessingS3DataType = "S3Prefix" )
Enum values for ProcessingS3DataType
type ProcessingS3Input ¶
type ProcessingS3Input struct { // Whether you use an S3Prefix or a ManifestFile for the data type. If you choose // S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects // with the specified key name prefix for the processing job. If you choose // ManifestFile, S3Uri identifies an object that is a manifest file containing a // list of object keys that you want Amazon SageMaker to use for the processing // job. // // This member is required. S3DataType ProcessingS3DataType // Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key. S3DataDistributionType ProcessingS3DataDistributionType // Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies // the data from the input source onto the local Amazon Elastic Block Store (Amazon // EBS) volumes before starting your training algorithm. This is the most commonly // used input mode. In Pipe mode, Amazon SageMaker streams input data from the // source directly to your algorithm without using the EBS volume. // // This member is required. S3InputMode ProcessingS3InputMode // Whether to use Gzip compression for Amazon S3 storage. S3CompressionType ProcessingS3CompressionType // The URI for the Amazon S3 storage where you want Amazon SageMaker to download // the artifacts needed to run a processing job. // // This member is required. S3Uri *string // The local path to the Amazon S3 bucket where you want Amazon SageMaker to // download the inputs to run a processing job. LocalPath is an absolute path to // the input data. // // This member is required. LocalPath *string }
Information about where and how you want to obtain the inputs for an processing job.
type ProcessingS3InputMode ¶
type ProcessingS3InputMode string
const ( ProcessingS3InputModePipe ProcessingS3InputMode = "Pipe" ProcessingS3InputModeFile ProcessingS3InputMode = "File" )
Enum values for ProcessingS3InputMode
type ProcessingS3Output ¶
type ProcessingS3Output struct { // The local path to the Amazon S3 bucket where you want Amazon SageMaker to save // the results of an processing job. LocalPath is an absolute path to the input // data. // // This member is required. LocalPath *string // Whether to upload the results of the processing job continuously or after the // job completes. // // This member is required. S3UploadMode ProcessingS3UploadMode // A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to // save the results of a processing job. // // This member is required. S3Uri *string }
Information about where and how you want to store the results of an processing job.
type ProcessingS3UploadMode ¶
type ProcessingS3UploadMode string
const ( ProcessingS3UploadModeContinuous ProcessingS3UploadMode = "Continuous" ProcessingS3UploadModeEnd_of_job ProcessingS3UploadMode = "EndOfJob" )
Enum values for ProcessingS3UploadMode
type ProcessingStoppingCondition ¶
type ProcessingStoppingCondition struct { // Specifies the maximum runtime in seconds. // // This member is required. MaxRuntimeInSeconds *int32 }
Specifies a time limit for how long the processing job is allowed to run.
type ProductionVariant ¶
type ProductionVariant struct { // The name of the model that you want to host. This is the name that you specified // when creating the model. // // This member is required. ModelName *string // The ML compute instance type. // // This member is required. InstanceType ProductionVariantInstanceType // Number of instances to launch initially. // // This member is required. InitialInstanceCount *int32 // The name of the production variant. // // This member is required. VariantName *string // Determines initial traffic distribution among all of the models that you specify // in the endpoint configuration. The traffic to a production variant is determined // by the ratio of the VariantWeight to the sum of all VariantWeight values across // all ProductionVariants. If unspecified, it defaults to 1.0. InitialVariantWeight *float32 // The size of the Elastic Inference (EI) instance to use for the production // variant. EI instances provide on-demand GPU computing for inference. For more // information, see Using Elastic Inference in Amazon SageMaker // (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html). AcceleratorType ProductionVariantAcceleratorType }
Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights.
type ProductionVariantAcceleratorType ¶
type ProductionVariantAcceleratorType string
const ( ProductionVariantAcceleratorTypeMl_eia1_medium ProductionVariantAcceleratorType = "ml.eia1.medium" ProductionVariantAcceleratorTypeMl_eia1_large ProductionVariantAcceleratorType = "ml.eia1.large" ProductionVariantAcceleratorTypeMl_eia1_xlarge ProductionVariantAcceleratorType = "ml.eia1.xlarge" ProductionVariantAcceleratorTypeMl_eia2_medium ProductionVariantAcceleratorType = "ml.eia2.medium" ProductionVariantAcceleratorTypeMl_eia2_large ProductionVariantAcceleratorType = "ml.eia2.large" ProductionVariantAcceleratorTypeMl_eia2_xlarge ProductionVariantAcceleratorType = "ml.eia2.xlarge" )
Enum values for ProductionVariantAcceleratorType
type ProductionVariantInstanceType ¶
type ProductionVariantInstanceType string
const ( ProductionVariantInstanceTypeMl_t2_medium ProductionVariantInstanceType = "ml.t2.medium" ProductionVariantInstanceTypeMl_t2_large ProductionVariantInstanceType = "ml.t2.large" ProductionVariantInstanceTypeMl_t2_xlarge ProductionVariantInstanceType = "ml.t2.xlarge" ProductionVariantInstanceTypeMl_t2_2xlarge ProductionVariantInstanceType = "ml.t2.2xlarge" ProductionVariantInstanceTypeMl_m4_xlarge ProductionVariantInstanceType = "ml.m4.xlarge" ProductionVariantInstanceTypeMl_m4_2xlarge ProductionVariantInstanceType = "ml.m4.2xlarge" ProductionVariantInstanceTypeMl_m4_4xlarge ProductionVariantInstanceType = "ml.m4.4xlarge" ProductionVariantInstanceTypeMl_m4_10xlarge ProductionVariantInstanceType = "ml.m4.10xlarge" ProductionVariantInstanceTypeMl_m4_16xlarge ProductionVariantInstanceType = "ml.m4.16xlarge" ProductionVariantInstanceTypeMl_m5_large ProductionVariantInstanceType = "ml.m5.large" ProductionVariantInstanceTypeMl_m5_xlarge ProductionVariantInstanceType = "ml.m5.xlarge" ProductionVariantInstanceTypeMl_m5_2xlarge ProductionVariantInstanceType = "ml.m5.2xlarge" ProductionVariantInstanceTypeMl_m5_4xlarge ProductionVariantInstanceType = "ml.m5.4xlarge" ProductionVariantInstanceTypeMl_m5_12xlarge ProductionVariantInstanceType = "ml.m5.12xlarge" ProductionVariantInstanceTypeMl_m5_24xlarge ProductionVariantInstanceType = "ml.m5.24xlarge" ProductionVariantInstanceTypeMl_m5d_large ProductionVariantInstanceType = "ml.m5d.large" ProductionVariantInstanceTypeMl_m5d_xlarge ProductionVariantInstanceType = "ml.m5d.xlarge" ProductionVariantInstanceTypeMl_m5d_2xlarge ProductionVariantInstanceType = "ml.m5d.2xlarge" ProductionVariantInstanceTypeMl_m5d_4xlarge ProductionVariantInstanceType = "ml.m5d.4xlarge" ProductionVariantInstanceTypeMl_m5d_12xlarge ProductionVariantInstanceType = "ml.m5d.12xlarge" ProductionVariantInstanceTypeMl_m5d_24xlarge ProductionVariantInstanceType = "ml.m5d.24xlarge" ProductionVariantInstanceTypeMl_c4_large ProductionVariantInstanceType = "ml.c4.large" ProductionVariantInstanceTypeMl_c4_xlarge ProductionVariantInstanceType = "ml.c4.xlarge" ProductionVariantInstanceTypeMl_c4_2xlarge ProductionVariantInstanceType = "ml.c4.2xlarge" ProductionVariantInstanceTypeMl_c4_4xlarge ProductionVariantInstanceType = "ml.c4.4xlarge" ProductionVariantInstanceTypeMl_c4_8xlarge ProductionVariantInstanceType = "ml.c4.8xlarge" ProductionVariantInstanceTypeMl_p2_xlarge ProductionVariantInstanceType = "ml.p2.xlarge" ProductionVariantInstanceTypeMl_p2_8xlarge ProductionVariantInstanceType = "ml.p2.8xlarge" ProductionVariantInstanceTypeMl_p2_16xlarge ProductionVariantInstanceType = "ml.p2.16xlarge" ProductionVariantInstanceTypeMl_p3_2xlarge ProductionVariantInstanceType = "ml.p3.2xlarge" ProductionVariantInstanceTypeMl_p3_8xlarge ProductionVariantInstanceType = "ml.p3.8xlarge" ProductionVariantInstanceTypeMl_p3_16xlarge ProductionVariantInstanceType = "ml.p3.16xlarge" ProductionVariantInstanceTypeMl_c5_large ProductionVariantInstanceType = "ml.c5.large" ProductionVariantInstanceTypeMl_c5_xlarge ProductionVariantInstanceType = "ml.c5.xlarge" ProductionVariantInstanceTypeMl_c5_2xlarge ProductionVariantInstanceType = "ml.c5.2xlarge" ProductionVariantInstanceTypeMl_c5_4xlarge ProductionVariantInstanceType = "ml.c5.4xlarge" ProductionVariantInstanceTypeMl_c5_9xlarge ProductionVariantInstanceType = "ml.c5.9xlarge" ProductionVariantInstanceTypeMl_c5_18xlarge ProductionVariantInstanceType = "ml.c5.18xlarge" ProductionVariantInstanceTypeMl_c5d_large ProductionVariantInstanceType = "ml.c5d.large" ProductionVariantInstanceTypeMl_c5d_xlarge ProductionVariantInstanceType = "ml.c5d.xlarge" ProductionVariantInstanceTypeMl_c5d_2xlarge ProductionVariantInstanceType = "ml.c5d.2xlarge" ProductionVariantInstanceTypeMl_c5d_4xlarge ProductionVariantInstanceType = "ml.c5d.4xlarge" ProductionVariantInstanceTypeMl_c5d_9xlarge ProductionVariantInstanceType = "ml.c5d.9xlarge" ProductionVariantInstanceTypeMl_c5d_18xlarge ProductionVariantInstanceType = "ml.c5d.18xlarge" ProductionVariantInstanceTypeMl_g4dn_xlarge ProductionVariantInstanceType = "ml.g4dn.xlarge" ProductionVariantInstanceTypeMl_g4dn_2xlarge ProductionVariantInstanceType = "ml.g4dn.2xlarge" ProductionVariantInstanceTypeMl_g4dn_4xlarge ProductionVariantInstanceType = "ml.g4dn.4xlarge" ProductionVariantInstanceTypeMl_g4dn_8xlarge ProductionVariantInstanceType = "ml.g4dn.8xlarge" ProductionVariantInstanceTypeMl_g4dn_12xlarge ProductionVariantInstanceType = "ml.g4dn.12xlarge" ProductionVariantInstanceTypeMl_g4dn_16xlarge ProductionVariantInstanceType = "ml.g4dn.16xlarge" ProductionVariantInstanceTypeMl_r5_large ProductionVariantInstanceType = "ml.r5.large" ProductionVariantInstanceTypeMl_r5_xlarge ProductionVariantInstanceType = "ml.r5.xlarge" ProductionVariantInstanceTypeMl_r5_2xlarge ProductionVariantInstanceType = "ml.r5.2xlarge" ProductionVariantInstanceTypeMl_r5_4xlarge ProductionVariantInstanceType = "ml.r5.4xlarge" ProductionVariantInstanceTypeMl_r5_12xlarge ProductionVariantInstanceType = "ml.r5.12xlarge" ProductionVariantInstanceTypeMl_r5_24xlarge ProductionVariantInstanceType = "ml.r5.24xlarge" ProductionVariantInstanceTypeMl_r5d_large ProductionVariantInstanceType = "ml.r5d.large" ProductionVariantInstanceTypeMl_r5d_xlarge ProductionVariantInstanceType = "ml.r5d.xlarge" ProductionVariantInstanceTypeMl_r5d_2xlarge ProductionVariantInstanceType = "ml.r5d.2xlarge" ProductionVariantInstanceTypeMl_r5d_4xlarge ProductionVariantInstanceType = "ml.r5d.4xlarge" ProductionVariantInstanceTypeMl_r5d_12xlarge ProductionVariantInstanceType = "ml.r5d.12xlarge" ProductionVariantInstanceTypeMl_r5d_24xlarge ProductionVariantInstanceType = "ml.r5d.24xlarge" ProductionVariantInstanceTypeMl_inf1_xlarge ProductionVariantInstanceType = "ml.inf1.xlarge" ProductionVariantInstanceTypeMl_inf1_2xlarge ProductionVariantInstanceType = "ml.inf1.2xlarge" ProductionVariantInstanceTypeMl_inf1_6xlarge ProductionVariantInstanceType = "ml.inf1.6xlarge" ProductionVariantInstanceTypeMl_inf1_24xlarge ProductionVariantInstanceType = "ml.inf1.24xlarge" )
Enum values for ProductionVariantInstanceType
type ProductionVariantSummary ¶
type ProductionVariantSummary struct { // The requested weight, as specified in the UpdateEndpointWeightsAndCapacities // request. DesiredWeight *float32 // The name of the variant. // // This member is required. VariantName *string // The number of instances associated with the variant. CurrentInstanceCount *int32 // The number of instances requested in the UpdateEndpointWeightsAndCapacities // request. DesiredInstanceCount *int32 // The weight associated with the variant. CurrentWeight *float32 // An array of DeployedImage objects that specify the Amazon EC2 Container Registry // paths of the inference images deployed on instances of this ProductionVariant. DeployedImages []*DeployedImage }
Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API and the endpoint status is Updating, you get different desired and current values.
type PropertyNameQuery ¶
type PropertyNameQuery struct { // Text that begins a property's name. // // This member is required. PropertyNameHint *string }
Part of the SuggestionQuery type. Specifies a hint for retrieving property names that begin with the specified text.
type PropertyNameSuggestion ¶
type PropertyNameSuggestion struct { // A suggested property name based on what you entered in the search textbox in the // Amazon SageMaker console. PropertyName *string }
A property name returned from a GetSearchSuggestions call that specifies a value in the PropertyNameQuery field.
type PublicWorkforceTaskPrice ¶
type PublicWorkforceTaskPrice struct { // Defines the amount of money paid to an Amazon Mechanical Turk worker in United // States dollars. AmountInUsd *USD }
Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed. Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.
0.036
*
0.048
0.060
0.072
0.120
0.240
0.360
*
0.480
0.600
0.720
0.840
0.960
1.080
*
1.200
Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.
0.012
*
0.024
0.036
0.048
0.060
0.072
0.120
*
0.240
0.360
0.480
0.600
0.720
0.840
*
0.960
1.080
1.200
Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.
0.840
0.960
*
1.080
- 1.200
Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
* 2.400
2.280
2.160
2.040
1.920
1.800
*
1.680
1.560
1.440
1.320
1.200
1.080
*
0.960
0.840
0.720
0.600
0.480
0.360
*
0.240
0.120
0.072
0.060
0.048
0.036
*
0.024
- 0.012
Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.
1.200
1.080
0.960
0.840
0.720
*
0.600
0.480
0.360
0.240
0.120
0.072
*
0.060
0.048
0.036
0.024
0.012
Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.
1.200
1.080
0.960
0.840
*
0.720
0.600
0.480
0.360
0.240
0.120
*
0.072
0.060
0.048
0.036
0.024
0.012
type RecordWrapper ¶
type RecordWrapper string
const ( RecordWrapperNone RecordWrapper = "None" RecordWrapperRecordio RecordWrapper = "RecordIO" )
Enum values for RecordWrapper
type RenderableTask ¶
type RenderableTask struct { // A JSON object that contains values for the variables defined in the template. It // is made available to the template under the substitution variable task.input. // For example, if you define a variable task.input.text in your template, you can // supply the variable in the JSON object as "text": "sample text". // // This member is required. Input *string }
Contains input values for a task.
type RenderingError ¶
type RenderingError struct { // A human-readable message describing the error. // // This member is required. Message *string // A unique identifier for a specific class of errors. // // This member is required. Code *string }
A description of an error that occurred while rendering the template.
type ResolvedAttributes ¶
type ResolvedAttributes struct { // The problem type. ProblemType ProblemType // How long a job is allowed to run, or how many candidates a job is allowed to // generate. CompletionCriteria *AutoMLJobCompletionCriteria // Applies a metric to minimize or maximize for the job's objective. AutoMLJobObjective *AutoMLJobObjective }
The resolved attributes.
type ResourceConfig ¶
type ResourceConfig struct { // The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume // attached to the ML compute instance(s) that run the training job. Certain // Nitro-based instances include local storage, dependent on the instance type. // Local storage volumes are encrypted using a hardware module on the instance. You // can't request a VolumeKmsKeyId when using an instance type with local storage. // For a list of instance types that support local instance storage, see Instance // Store Volumes // (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes). // For more information about local instance storage encryption, see SSD Instance // Store Volumes // (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html). // The VolumeKmsKeyId can be in any of the following formats: // // * // KMS Key ID // "1234abcd-12ab-34cd-56ef-1234567890ab" // // * // Amazon Resource Name (ARN) of a // KMS Key // "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" VolumeKmsKeyId *string // The ML compute instance type. // // This member is required. InstanceType TrainingInstanceType // The number of ML compute instances to use. For distributed training, provide a // value greater than 1. // // This member is required. InstanceCount *int32 // The size of the ML storage volume that you want to provision. ML storage volumes // store model artifacts and incremental states. Training algorithms might also use // the ML storage volume for scratch space. If you want to store the training data // in the ML storage volume, choose File as the TrainingInputMode in the algorithm // specification. You must specify sufficient ML storage for your scenario. Amazon // SageMaker supports only the General Purpose SSD (gp2) ML storage volume type. // Certain Nitro-based instances include local storage with a fixed total size, // dependent on the instance type. When using these instances for training, Amazon // SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. // You can't request a VolumeSizeInGB greater than the total size of the local // instance storage. For a list of instance types that support local instance // storage, including the total size per instance type, see Instance Store Volumes // (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes). // // This member is required. VolumeSizeInGB *int32 }
Describes the resources, including ML compute instances and ML storage volumes, to use for model training.
type ResourceInUse ¶
type ResourceInUse struct { Message *string }
Resource being accessed is in use.
func (*ResourceInUse) Error ¶
func (e *ResourceInUse) Error() string
func (*ResourceInUse) ErrorCode ¶
func (e *ResourceInUse) ErrorCode() string
func (*ResourceInUse) ErrorFault ¶
func (e *ResourceInUse) ErrorFault() smithy.ErrorFault
func (*ResourceInUse) ErrorMessage ¶
func (e *ResourceInUse) ErrorMessage() string
type ResourceLimitExceeded ¶
type ResourceLimitExceeded struct { Message *string }
You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created.
func (*ResourceLimitExceeded) Error ¶
func (e *ResourceLimitExceeded) Error() string
func (*ResourceLimitExceeded) ErrorCode ¶
func (e *ResourceLimitExceeded) ErrorCode() string
func (*ResourceLimitExceeded) ErrorFault ¶
func (e *ResourceLimitExceeded) ErrorFault() smithy.ErrorFault
func (*ResourceLimitExceeded) ErrorMessage ¶
func (e *ResourceLimitExceeded) ErrorMessage() string
type ResourceLimits ¶
type ResourceLimits struct { // The maximum number of concurrent training jobs that a hyperparameter tuning job // can launch. // // This member is required. MaxParallelTrainingJobs *int32 // The maximum number of training jobs that a hyperparameter tuning job can launch. // // This member is required. MaxNumberOfTrainingJobs *int32 }
Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.
type ResourceNotFound ¶
type ResourceNotFound struct { Message *string }
Resource being access is not found.
func (*ResourceNotFound) Error ¶
func (e *ResourceNotFound) Error() string
func (*ResourceNotFound) ErrorCode ¶
func (e *ResourceNotFound) ErrorCode() string
func (*ResourceNotFound) ErrorFault ¶
func (e *ResourceNotFound) ErrorFault() smithy.ErrorFault
func (*ResourceNotFound) ErrorMessage ¶
func (e *ResourceNotFound) ErrorMessage() string
type ResourceSpec ¶
type ResourceSpec struct { // The Amazon Resource Name (ARN) of the SageMaker image created on the instance. SageMakerImageArn *string // The instance type. InstanceType AppInstanceType }
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The ARN is stored as metadata in SageMaker Studio notebooks.
type ResourceType ¶
type ResourceType string
const ( ResourceTypeTraining_job ResourceType = "TrainingJob" ResourceTypeExperiment ResourceType = "Experiment" ResourceTypeExperiment_trial ResourceType = "ExperimentTrial" ResourceTypeExperiment_trial_component ResourceType = "ExperimentTrialComponent" )
Enum values for ResourceType
type RetentionPolicy ¶
type RetentionPolicy struct { // The default is Retain, which specifies to keep the data stored on the EFS // volume. Specify Delete to delete the data stored on the EFS volume. HomeEfsFileSystem RetentionType }
The retention policy for data stored on an Amazon Elastic File System (EFS) volume.
type RetentionType ¶
type RetentionType string
const ( RetentionTypeRetain RetentionType = "Retain" RetentionTypeDelete RetentionType = "Delete" )
Enum values for RetentionType
type RootAccess ¶
type RootAccess string
const ( RootAccessEnabled RootAccess = "Enabled" RootAccessDisabled RootAccess = "Disabled" )
Enum values for RootAccess
type RuleEvaluationStatus ¶
type RuleEvaluationStatus string
const ( RuleEvaluationStatusIn_progress RuleEvaluationStatus = "InProgress" RuleEvaluationStatusNo_issues_found RuleEvaluationStatus = "NoIssuesFound" RuleEvaluationStatusIssues_found RuleEvaluationStatus = "IssuesFound" RuleEvaluationStatusError RuleEvaluationStatus = "Error" RuleEvaluationStatusStopping RuleEvaluationStatus = "Stopping" RuleEvaluationStatusStopped RuleEvaluationStatus = "Stopped" )
Enum values for RuleEvaluationStatus
type S3DataDistribution ¶
type S3DataDistribution string
const ( S3DataDistributionFully_replicated S3DataDistribution = "FullyReplicated" S3DataDistributionSharded_by_s3_key S3DataDistribution = "ShardedByS3Key" )
Enum values for S3DataDistribution
type S3DataSource ¶
type S3DataSource struct { // If you want Amazon SageMaker to replicate the entire dataset on each ML compute // instance that is launched for model training, specify FullyReplicated. If you // want Amazon SageMaker to replicate a subset of data on each ML compute instance // that is launched for model training, specify ShardedByS3Key. If there are n ML // compute instances launched for a training job, each instance gets approximately // 1/n of the number of S3 objects. In this case, model training on each machine // uses only the subset of training data. Don't choose more ML compute instances // for training than available S3 objects. If you do, some nodes won't get any data // and you will pay for nodes that aren't getting any training data. This applies // in both File and Pipe modes. Keep this in mind when developing algorithms. In // distributed training, where you use multiple ML compute EC2 instances, you might // choose ShardedByS3Key. If the algorithm requires copying training data to the ML // storage volume (when TrainingInputMode is set to File), this copies 1/n of the // number of objects. S3DataDistributionType S3DataDistribution // A list of one or more attribute names to use that are found in a specified // augmented manifest file. AttributeNames []*string // If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker // uses all objects that match the specified key name prefix for model training. If // you choose ManifestFile, S3Uri identifies an object that is a manifest file // containing a list of object keys that you want Amazon SageMaker to use for model // training. If you choose AugmentedManifestFile, S3Uri identifies an object that // is an augmented manifest file in JSON lines format. This file contains the data // you want to use for model training. AugmentedManifestFile can only be used if // the Channel's input mode is Pipe. // // This member is required. S3DataType S3DataType // Depending on the value specified for the S3DataType, identifies either a key // name prefix or a manifest. For example: // // * A key name prefix might look like // this: s3://bucketname/exampleprefix // // * A manifest might look like this: // s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file // consisting of an array of elements. The first element is a prefix which is // followed by one or more suffixes. SageMaker appends the suffix elements to the // prefix to get a full set of S3Uri. Note that the prefix must be a valid // non-empty S3Uri that precludes users from specifying a manifest whose individual // S3Uri is sourced from different S3 buckets. The following code example shows a // valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, // "relative/path/to/custdata-1", "relative/path/custdata-2", ... // "relative/path/custdata-N"] This JSON is equivalent to the following S3Uri list: // s3://customer_bucket/some/prefix/relative/path/to/custdata-1s3://customer_bucket/some/prefix/relative/path/custdata-2...s3://customer_bucket/some/prefix/relative/path/custdata-N // The complete set of S3Uri in this manifest is the input data for the channel for // this data source. The object that each S3Uri points to must be readable by the // IAM role that Amazon SageMaker uses to perform tasks on your behalf. // // This member is required. S3Uri *string }
Describes the S3 data source.
type S3DataType ¶
type S3DataType string
const ( S3DataTypeManifest_file S3DataType = "ManifestFile" S3DataTypeS3_prefix S3DataType = "S3Prefix" S3DataTypeAugmented_manifest_file S3DataType = "AugmentedManifestFile" )
Enum values for S3DataType
type ScheduleConfig ¶
type ScheduleConfig struct { // A cron expression that describes details about the monitoring schedule. // <p>Currently the only supported cron expressions are:</p> <ul> <li> <p>If you // want to set the job to start every hour, please use the following:</p> <p> // <code>Hourly: cron(0 * ? * * *)</code> </p> </li> <li> <p>If you want to start // the job daily:</p> <p> <code>cron(0 [00-23] ? * * *)</code> </p> </li> </ul> // <p>For example, the following are valid cron expressions:</p> <ul> <li> <p>Daily // at noon UTC: <code>cron(0 12 ? * * *)</code> </p> </li> <li> <p>Daily at // midnight UTC: <code>cron(0 0 ? * * *)</code> </p> </li> </ul> <p>To support // running every 6, 12 hours, the following are also supported:</p> <p> // <code>cron(0 [00-23]/[01-24] ? * * *)</code> </p> <p>For example, the following // are valid cron expressions:</p> <ul> <li> <p>Every 12 hours, starting at 5pm // UTC: <code>cron(0 17/12 ? * * *)</code> </p> </li> <li> <p>Every two hours // starting at midnight: <code>cron(0 0/2 ? * * *)</code> </p> </li> </ul> <note> // <ul> <li> <p>Even though the cron expression is set to start at 5PM UTC, note // that there could be a delay of 0-20 minutes from the actual requested time to // run the execution. </p> </li> <li> <p>We recommend that if you would like a // daily schedule, you do not provide this parameter. Amazon SageMaker will pick a // time for running every day.</p> </li> </ul> </note> // // This member is required. ScheduleExpression *string }
Configuration details about the monitoring schedule.
type ScheduleStatus ¶
type ScheduleStatus string
const ( ScheduleStatusPending ScheduleStatus = "Pending" ScheduleStatusFailed ScheduleStatus = "Failed" ScheduleStatusScheduled ScheduleStatus = "Scheduled" ScheduleStatusStopped ScheduleStatus = "Stopped" )
Enum values for ScheduleStatus
type SearchExpression ¶
type SearchExpression struct { // A list of filter objects. Filters []*Filter // A list of search expression objects. SubExpressions []*SearchExpression // A Boolean operator used to evaluate the search expression. If you want every // conditional statement in all lists to be satisfied for the entire search // expression to be true, specify And. If only a single conditional statement needs // to be true for the entire search expression to be true, specify Or. The default // value is And. Operator BooleanOperator // A list of nested filter objects. NestedFilters []*NestedFilters }
A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A SearchExpression can contain up to twenty elements. A SearchExpression contains the following components:
- A list of Filter
objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.
- A list of NestedFilter
objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.
- A list of SearchExpression
objects. A search expression object can be nested in a list of search expression objects.
- A Boolean operator: And or Or.
type SearchRecord ¶
type SearchRecord struct { // The properties of a trial. Trial *Trial // The properties of an experiment. Experiment *Experiment // The properties of a trial component. TrialComponent *TrialComponent // The properties of a training job. TrainingJob *TrainingJob }
A single resource returned as part of the Search () API response.
type SearchSortOrder ¶
type SearchSortOrder string
const ( SearchSortOrderAscending SearchSortOrder = "Ascending" SearchSortOrderDescending SearchSortOrder = "Descending" )
Enum values for SearchSortOrder
type SecondaryStatus ¶
type SecondaryStatus string
const ( SecondaryStatusStarting SecondaryStatus = "Starting" SecondaryStatusLaunching_ml_instances SecondaryStatus = "LaunchingMLInstances" SecondaryStatusPreparing_training_stack SecondaryStatus = "PreparingTrainingStack" SecondaryStatusDownloading SecondaryStatus = "Downloading" SecondaryStatusDownloading_training_image SecondaryStatus = "DownloadingTrainingImage" SecondaryStatusTraining SecondaryStatus = "Training" SecondaryStatusUploading SecondaryStatus = "Uploading" SecondaryStatusStopping SecondaryStatus = "Stopping" SecondaryStatusStopped SecondaryStatus = "Stopped" SecondaryStatusMax_runtime_exceeded SecondaryStatus = "MaxRuntimeExceeded" SecondaryStatusCompleted SecondaryStatus = "Completed" SecondaryStatusFailed SecondaryStatus = "Failed" SecondaryStatusInterrupted SecondaryStatus = "Interrupted" SecondaryStatusMax_wait_time_exceeded SecondaryStatus = "MaxWaitTimeExceeded" )
Enum values for SecondaryStatus
type SecondaryStatusTransition ¶
type SecondaryStatusTransition struct { // A detailed description of the progress within a secondary status. Amazon // SageMaker provides secondary statuses and status messages that apply to each of // them: Starting // // * Starting the training job. // // * Launching requested ML // instances. // // * Insufficient capacity error from EC2 while launching // instances, retrying! // // * Launched instance was unhealthy, replacing it! // // // * Preparing the instances for training. // // Training // // * Downloading the // training image. // // * Training image download completed. Training in // progress. // // Status messages are subject to change. Therefore, we recommend not // including them in code that programmatically initiates actions. For examples, // don't use status messages in if statements. To have an overview of your training // job's progress, view TrainingJobStatus and SecondaryStatus in // DescribeTrainingJob (), and StatusMessage together. For example, at the start of // a training job, you might see the following: // // * TrainingJobStatus - // InProgress // // * SecondaryStatus - Training // // * StatusMessage - Downloading // the training image StatusMessage *string // A timestamp that shows when the training job transitioned to the current // secondary status state. // // This member is required. StartTime *time.Time // Contains a secondary status information from a training job. Status might be one // of the following secondary statuses: InProgress // // * Starting - Starting the // training job. // // * Downloading - An optional stage for algorithms that support // File training input mode. It indicates that data is being downloaded to the ML // storage volumes. // // * Training - Training is in progress. // // * Uploading - // Training is complete and the model artifacts are being uploaded to the S3 // location. // // Completed // // * Completed - The training job has // completed. // // Failed // // * Failed - The training job has failed. The reason for // the failure is returned in the FailureReason field of // DescribeTrainingJobResponse. // // Stopped // // * MaxRuntimeExceeded - The job // stopped because it exceeded the maximum allowed runtime. // // * Stopped - The // training job has stopped. // // Stopping // // * Stopping - Stopping the training // job. // // We no longer support the following secondary statuses: // // * // LaunchingMLInstances // // * PreparingTrainingStack // // * // DownloadingTrainingImage // // This member is required. Status SecondaryStatus // A timestamp that shows when the training job transitioned out of this secondary // status state into another secondary status state or when the training job has // ended. EndTime *time.Time }
An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions (). It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status.
type SharingSettings ¶
type SharingSettings struct { // Whether to include the notebook cell output when sharing the notebook. The // default is Disabled. NotebookOutputOption NotebookOutputOption // When NotebookOutputOption is Allowed, the Amazon S3 bucket used to save the // notebook cell output. If S3OutputPath isn't specified, a default bucket is used. S3OutputPath *string // When NotebookOutputOption is Allowed, the AWS Key Management Service (KMS) // encryption key ID used to encrypt the notebook cell output in the Amazon S3 // bucket. S3KmsKeyId *string }
Specifies options when sharing an Amazon SageMaker Studio notebook. These settings are specified as part of DefaultUserSettings when the CreateDomain () API is called, and as part of UserSettings when the CreateUserProfile () API is called.
type ShuffleConfig ¶
type ShuffleConfig struct { // Determines the shuffling order in ShuffleConfig value. // // This member is required. Seed *int64 }
A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, the results of the S3 key prefix matches are shuffled. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, when ShuffleConfig is specified shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
type SortBy ¶
type SortBy string
const ( SortByName SortBy = "Name" SortByCreation_time SortBy = "CreationTime" SortByStatus SortBy = "Status" )
Enum values for SortBy
type SortExperimentsBy ¶
type SortExperimentsBy string
const ( SortExperimentsByName SortExperimentsBy = "Name" SortExperimentsByCreation_time SortExperimentsBy = "CreationTime" )
Enum values for SortExperimentsBy
type SortOrder ¶
type SortOrder string
Enum values for SortOrder
type SortTrialComponentsBy ¶
type SortTrialComponentsBy string
const ( SortTrialComponentsByName SortTrialComponentsBy = "Name" SortTrialComponentsByCreation_time SortTrialComponentsBy = "CreationTime" )
Enum values for SortTrialComponentsBy
type SortTrialsBy ¶
type SortTrialsBy string
const ( SortTrialsByName SortTrialsBy = "Name" SortTrialsByCreation_time SortTrialsBy = "CreationTime" )
Enum values for SortTrialsBy
type SourceAlgorithm ¶
type SourceAlgorithm struct { // The name of an algorithm that was used to create the model package. The // algorithm must be either an algorithm resource in your Amazon SageMaker account // or an algorithm in AWS Marketplace that you are subscribed to. // // This member is required. AlgorithmName *string // The Amazon S3 path where the model artifacts, which result from model training, // are stored. This path must point to a single gzip compressed tar archive // (.tar.gz suffix). ModelDataUrl *string }
Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
type SourceAlgorithmSpecification ¶
type SourceAlgorithmSpecification struct { // A list of the algorithms that were used to create a model package. // // This member is required. SourceAlgorithms []*SourceAlgorithm }
A list of algorithms that were used to create a model package.
type SourceIpConfig ¶
type SourceIpConfig struct { // A list of one to ten Classless Inter-Domain Routing // (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html) (CIDR) // values. Maximum: Ten CIDR values The following Length Constraints apply to // individual CIDR values in the CIDR value list. // // This member is required. Cidrs []*string }
A list of IP address ranges (CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)). Used to create an allow list of IP addresses for a private workforce. For more information, see .
type SplitType ¶
type SplitType string
const ( SplitTypeNone SplitType = "None" SplitTypeLine SplitType = "Line" SplitTypeRecordio SplitType = "RecordIO" SplitTypeTfrecord SplitType = "TFRecord" )
Enum values for SplitType
type StoppingCondition ¶
type StoppingCondition struct { // The maximum length of time, in seconds, how long you are willing to wait for a // managed spot training job to complete. It is the amount of time spent waiting // for Spot capacity plus the amount of time the training job runs. It must be // equal to or greater than MaxRuntimeInSeconds. MaxWaitTimeInSeconds *int32 // The maximum length of time, in seconds, that the training or compilation job can // run. If job does not complete during this time, Amazon SageMaker ends the job. // If value is not specified, default value is 1 day. The maximum value is 28 days. MaxRuntimeInSeconds *int32 }
Specifies a limit to how long a model training or compilation job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the time limit, Amazon SageMaker ends the training or compilation job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. The training algorithms provided by Amazon SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with CreateModel. The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.
type SubscribedWorkteam ¶
type SubscribedWorkteam struct { // The Amazon Resource Name (ARN) of the vendor that you have subscribed. // // This member is required. WorkteamArn *string // The title of the service provided by the vendor in the Amazon Marketplace. MarketplaceTitle *string // Marketplace product listing ID. ListingId *string // The description of the vendor from the Amazon Marketplace. MarketplaceDescription *string // The name of the vendor in the Amazon Marketplace. SellerName *string }
Describes a work team of a vendor that does the a labelling job.
type SuggestionQuery ¶
type SuggestionQuery struct { // Defines a property name hint. Only property names that begin with the specified // hint are included in the response. PropertyNameQuery *PropertyNameQuery }
Specified in the GetSearchSuggestions () request. Limits the property names that are included in the response.
type Tag ¶
type Tag struct { // The tag value. // // This member is required. Value *string // The tag key. // // This member is required. Key *string }
Describes a tag.
type TargetDevice ¶
type TargetDevice string
const ( TargetDeviceLambda TargetDevice = "lambda" TargetDeviceMl_m4 TargetDevice = "ml_m4" TargetDeviceMl_m5 TargetDevice = "ml_m5" TargetDeviceMl_c4 TargetDevice = "ml_c4" TargetDeviceMl_c5 TargetDevice = "ml_c5" TargetDeviceMl_p2 TargetDevice = "ml_p2" TargetDeviceMl_p3 TargetDevice = "ml_p3" TargetDeviceMl_g4dn TargetDevice = "ml_g4dn" TargetDeviceMl_inf1 TargetDevice = "ml_inf1" TargetDeviceJetson_tx1 TargetDevice = "jetson_tx1" TargetDeviceJetson_tx2 TargetDevice = "jetson_tx2" TargetDeviceJetson_nano TargetDevice = "jetson_nano" TargetDeviceJetson_xavier TargetDevice = "jetson_xavier" TargetDeviceRasp3b TargetDevice = "rasp3b" TargetDeviceImx8qm TargetDevice = "imx8qm" TargetDeviceDeeplens TargetDevice = "deeplens" TargetDeviceRk3399 TargetDevice = "rk3399" TargetDeviceRk3288 TargetDevice = "rk3288" TargetDeviceAisage TargetDevice = "aisage" TargetDeviceSbe_c TargetDevice = "sbe_c" TargetDeviceQcs605 TargetDevice = "qcs605" TargetDeviceQcs603 TargetDevice = "qcs603" TargetDeviceSitara_am57x TargetDevice = "sitara_am57x" TargetDeviceAmba_cv22 TargetDevice = "amba_cv22" TargetDeviceX86_win32 TargetDevice = "x86_win32" TargetDeviceX86_win64 TargetDevice = "x86_win64" )
Enum values for TargetDevice
type TargetPlatform ¶
type TargetPlatform struct { // Specifies a target platform OS. // // * LINUX: Linux-based operating systems. // // // * ANDROID: Android operating systems. Android API level can be specified using // the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": // {'ANDROID_PLATFORM': 28} // // This member is required. Os TargetPlatformOs // Specifies a target platform accelerator (optional). // // * NVIDIA: Nvidia // graphics processing unit. It also requires gpu-code, trt-ver, cuda-ver compiler // options // // * MALI: ARM Mali graphics processor // // * INTEL_GRAPHICS: // Integrated Intel graphics Accelerator TargetPlatformAccelerator // Specifies a target platform architecture. // // * X86_64: 64-bit version of the // x86 instruction set. // // * X86: 32-bit version of the x86 instruction set. // // // * ARM64: ARMv8 64-bit CPU. // // * ARM_EABIHF: ARMv7 32-bit, Hard Float. // // * // ARM_EABI: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform. // // This member is required. Arch TargetPlatformArch }
Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.
type TargetPlatformAccelerator ¶
type TargetPlatformAccelerator string
const ( TargetPlatformAcceleratorIntel_graphics TargetPlatformAccelerator = "INTEL_GRAPHICS" TargetPlatformAcceleratorMali TargetPlatformAccelerator = "MALI" TargetPlatformAcceleratorNvidia TargetPlatformAccelerator = "NVIDIA" )
Enum values for TargetPlatformAccelerator
type TargetPlatformArch ¶
type TargetPlatformArch string
const ( TargetPlatformArchX86_64 TargetPlatformArch = "X86_64" TargetPlatformArchX86 TargetPlatformArch = "X86" TargetPlatformArchArm64 TargetPlatformArch = "ARM64" TargetPlatformArchArm_eabi TargetPlatformArch = "ARM_EABI" TargetPlatformArchArm_eabihf TargetPlatformArch = "ARM_EABIHF" )
Enum values for TargetPlatformArch
type TargetPlatformOs ¶
type TargetPlatformOs string
const ( TargetPlatformOsAndroid TargetPlatformOs = "ANDROID" TargetPlatformOsLinux TargetPlatformOs = "LINUX" )
Enum values for TargetPlatformOs
type TensorBoardAppSettings ¶
type TensorBoardAppSettings struct { // The default instance type and the Amazon Resource Name (ARN) of the SageMaker // image created on the instance. DefaultResourceSpec *ResourceSpec }
The TensorBoard app settings.
type TensorBoardOutputConfig ¶
type TensorBoardOutputConfig struct { // Path to Amazon S3 storage location for TensorBoard output. // // This member is required. S3OutputPath *string // Path to local storage location for tensorBoard output. Defaults to // /opt/ml/output/tensorboard. LocalPath *string }
Configuration of storage locations for TensorBoard output.
type TrainingInputMode ¶
type TrainingInputMode string
const ( TrainingInputModePipe TrainingInputMode = "Pipe" TrainingInputModeFile TrainingInputMode = "File" )
Enum values for TrainingInputMode
type TrainingInstanceType ¶
type TrainingInstanceType string
const ( TrainingInstanceTypeMl_m4_xlarge TrainingInstanceType = "ml.m4.xlarge" TrainingInstanceTypeMl_m4_2xlarge TrainingInstanceType = "ml.m4.2xlarge" TrainingInstanceTypeMl_m4_4xlarge TrainingInstanceType = "ml.m4.4xlarge" TrainingInstanceTypeMl_m4_10xlarge TrainingInstanceType = "ml.m4.10xlarge" TrainingInstanceTypeMl_m4_16xlarge TrainingInstanceType = "ml.m4.16xlarge" TrainingInstanceTypeMl_g4dn_xlarge TrainingInstanceType = "ml.g4dn.xlarge" TrainingInstanceTypeMl_g4dn_2xlarge TrainingInstanceType = "ml.g4dn.2xlarge" TrainingInstanceTypeMl_g4dn_4xlarge TrainingInstanceType = "ml.g4dn.4xlarge" TrainingInstanceTypeMl_g4dn_8xlarge TrainingInstanceType = "ml.g4dn.8xlarge" TrainingInstanceTypeMl_g4dn_12xlarge TrainingInstanceType = "ml.g4dn.12xlarge" TrainingInstanceTypeMl_g4dn_16xlarge TrainingInstanceType = "ml.g4dn.16xlarge" TrainingInstanceTypeMl_m5_large TrainingInstanceType = "ml.m5.large" TrainingInstanceTypeMl_m5_xlarge TrainingInstanceType = "ml.m5.xlarge" TrainingInstanceTypeMl_m5_2xlarge TrainingInstanceType = "ml.m5.2xlarge" TrainingInstanceTypeMl_m5_4xlarge TrainingInstanceType = "ml.m5.4xlarge" TrainingInstanceTypeMl_m5_12xlarge TrainingInstanceType = "ml.m5.12xlarge" TrainingInstanceTypeMl_m5_24xlarge TrainingInstanceType = "ml.m5.24xlarge" TrainingInstanceTypeMl_c4_xlarge TrainingInstanceType = "ml.c4.xlarge" TrainingInstanceTypeMl_c4_2xlarge TrainingInstanceType = "ml.c4.2xlarge" TrainingInstanceTypeMl_c4_4xlarge TrainingInstanceType = "ml.c4.4xlarge" TrainingInstanceTypeMl_c4_8xlarge TrainingInstanceType = "ml.c4.8xlarge" TrainingInstanceTypeMl_p2_xlarge TrainingInstanceType = "ml.p2.xlarge" TrainingInstanceTypeMl_p2_8xlarge TrainingInstanceType = "ml.p2.8xlarge" TrainingInstanceTypeMl_p2_16xlarge TrainingInstanceType = "ml.p2.16xlarge" TrainingInstanceTypeMl_p3_2xlarge TrainingInstanceType = "ml.p3.2xlarge" TrainingInstanceTypeMl_p3_8xlarge TrainingInstanceType = "ml.p3.8xlarge" TrainingInstanceTypeMl_p3_16xlarge TrainingInstanceType = "ml.p3.16xlarge" TrainingInstanceTypeMl_p3dn_24xlarge TrainingInstanceType = "ml.p3dn.24xlarge" TrainingInstanceTypeMl_c5_xlarge TrainingInstanceType = "ml.c5.xlarge" TrainingInstanceTypeMl_c5_2xlarge TrainingInstanceType = "ml.c5.2xlarge" TrainingInstanceTypeMl_c5_4xlarge TrainingInstanceType = "ml.c5.4xlarge" TrainingInstanceTypeMl_c5_9xlarge TrainingInstanceType = "ml.c5.9xlarge" TrainingInstanceTypeMl_c5_18xlarge TrainingInstanceType = "ml.c5.18xlarge" TrainingInstanceTypeMl_c5n_xlarge TrainingInstanceType = "ml.c5n.xlarge" TrainingInstanceTypeMl_c5n_2xlarge TrainingInstanceType = "ml.c5n.2xlarge" TrainingInstanceTypeMl_c5n_4xlarge TrainingInstanceType = "ml.c5n.4xlarge" TrainingInstanceTypeMl_c5n_9xlarge TrainingInstanceType = "ml.c5n.9xlarge" TrainingInstanceTypeMl_c5n_18xlarge TrainingInstanceType = "ml.c5n.18xlarge" )
Enum values for TrainingInstanceType
type TrainingJob ¶
type TrainingJob struct { // Resources, including ML compute instances and ML storage volumes, that are // configured for model training. ResourceConfig *ResourceConfig // The S3 path where model artifacts that you configured when creating the job are // stored. Amazon SageMaker creates subfolders for model artifacts. OutputDataConfig *OutputDataConfig // Information about the Amazon S3 location that is configured for storing model // artifacts. ModelArtifacts *ModelArtifacts // Information about the evaluation status of the rules for the training job. DebugRuleEvaluationStatuses []*DebugRuleEvaluationStatus // A VpcConfig () object that specifies the VPC that this training job has access // to. For more information, see Protect Training Jobs by Using an Amazon Virtual // Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html). VpcConfig *VpcConfig // An array of Channel objects that describes each data input channel. InputDataConfig []*Channel // If the TrainingJob was created with network isolation, the value is set to true. // If network isolation is enabled, nodes can't communicate beyond the VPC they run // in. EnableNetworkIsolation *bool // Specifies a limit to how long a model training job can run. When the job reaches // the time limit, Amazon SageMaker ends the training job. Use this API to cap // model training costs. To stop a job, Amazon SageMaker sends the algorithm the // SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use // this 120-second window to save the model artifacts, so the results of training // are not lost. StoppingCondition *StoppingCondition // An array of key-value pairs. For more information, see Using Cost Allocation // Tags // (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what) // in the AWS Billing and Cost Management User Guide. Tags []*Tag // Information about the debug rule configuration. DebugRuleConfigurations []*DebugRuleConfiguration // The Amazon Resource Name (ARN) of the job. AutoMLJobArn *string // Indicates the time when the training job starts on training instances. You are // billed for the time interval between this time and the value of TrainingEndTime. // The start time in CloudWatch Logs might be later than this time. The difference // is due to the time it takes to download the training data and to the size of the // training container. TrainingStartTime *time.Time // Information about the algorithm used for training, and algorithm metadata. AlgorithmSpecification *AlgorithmSpecification // The name of the training job. TrainingJobName *string // Provides detailed information about the state of the training job. For detailed // information about the secondary status of the training job, see StatusMessage // under SecondaryStatusTransition (). Amazon SageMaker provides primary statuses // and secondary statuses that apply to each of them: InProgress // // * Starting - // Starting the training job. // // * Downloading - An optional stage for algorithms // that support File training input mode. It indicates that data is being // downloaded to the ML storage volumes. // // * Training - Training is in // progress. // // * Uploading - Training is complete and the model artifacts are // being uploaded to the S3 location. // // Completed // // * Completed - The training // job has completed. // // Failed // // * Failed - The training job has failed. The // reason for the failure is returned in the FailureReason field of // DescribeTrainingJobResponse. // // Stopped // // * MaxRuntimeExceeded - The job // stopped because it exceeded the maximum allowed runtime. // // * Stopped - The // training job has stopped. // // Stopping // // * Stopping - Stopping the training // job. // // Valid values for SecondaryStatus are subject to change. We no longer // support the following secondary statuses: // // * LaunchingMLInstances // // * // PreparingTrainingStack // // * DownloadingTrainingImage SecondaryStatus SecondaryStatus // Algorithm-specific parameters. HyperParameters map[string]*string // A list of final metric values that are set when the training job completes. Used // only if the training job was configured to use metrics. FinalMetricDataList []*MetricData // A history of all of the secondary statuses that the training job has // transitioned through. SecondaryStatusTransitions []*SecondaryStatusTransition // The billable time in seconds. BillableTimeInSeconds *int32 // Contains information about the output location for managed spot training // checkpoint data. CheckpointConfig *CheckpointConfig // Configuration information for the debug hook parameters, collection // configuration, and storage paths. DebugHookConfig *DebugHookConfig // The AWS Identity and Access Management (IAM) role configured for the training // job. RoleArn *string // The status of the training job. Training job statuses are: // // * InProgress - // The training is in progress. // // * Completed - The training job has // completed. // // * Failed - The training job has failed. To see the reason for // the failure, see the FailureReason field in the response to a // DescribeTrainingJobResponse call. // // * Stopping - The training job is // stopping. // // * Stopped - The training job has stopped. // // For more detailed // information, see SecondaryStatus. TrainingJobStatus TrainingJobStatus // When true, enables managed spot training using Amazon EC2 Spot instances to run // training jobs instead of on-demand instances. For more information, see Managed // Spot Training // (https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html). EnableManagedSpotTraining *bool // The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if // the training job was launched by a hyperparameter tuning job. TuningJobArn *string // If the training job failed, the reason it failed. FailureReason *string // The Amazon Resource Name (ARN) of the labeling job. LabelingJobArn *string // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *ExperimentConfig // A timestamp that indicates when the status of the training job was last // modified. LastModifiedTime *time.Time // A timestamp that indicates when the training job was created. CreationTime *time.Time // Configuration of storage locations for TensorBoard output. TensorBoardOutputConfig *TensorBoardOutputConfig // The training time in seconds. TrainingTimeInSeconds *int32 // To encrypt all communications between ML compute instances in distributed // training, choose True. Encryption provides greater security for distributed // training, but training might take longer. How long it takes depends on the // amount of communication between compute instances, especially if you use a deep // learning algorithm in distributed training. EnableInterContainerTrafficEncryption *bool // The Amazon Resource Name (ARN) of the training job. TrainingJobArn *string // Indicates the time when the training job ends on training instances. You are // billed for the time interval between the value of TrainingStartTime and this // time. For successful jobs and stopped jobs, this is the time after model // artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker // detects a job failure. TrainingEndTime *time.Time }
Contains information about a training job.
type TrainingJobDefinition ¶
type TrainingJobDefinition struct { // The input mode used by the algorithm for the training job. For the input modes // that Amazon SageMaker algorithms support, see Algorithms // (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html). If an algorithm // supports the File input mode, Amazon SageMaker downloads the training data from // S3 to the provisioned ML storage Volume, and mounts the directory to docker // volume for training container. If an algorithm supports the Pipe input mode, // Amazon SageMaker streams data directly from S3 to the container. // // This member is required. TrainingInputMode TrainingInputMode // The hyperparameters used for the training job. HyperParameters map[string]*string // An array of Channel objects, each of which specifies an input source. // // This member is required. InputDataConfig []*Channel // the path to the S3 bucket where you want to store model artifacts. Amazon // SageMaker creates subfolders for the artifacts. // // This member is required. OutputDataConfig *OutputDataConfig // The resources, including the ML compute instances and ML storage volumes, to use // for model training. // // This member is required. ResourceConfig *ResourceConfig // Specifies a limit to how long a model training job can run. When the job reaches // the time limit, Amazon SageMaker ends the training job. Use this API to cap // model training costs. To stop a job, Amazon SageMaker sends the algorithm the // SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use // this 120-second window to save the model artifacts. // // This member is required. StoppingCondition *StoppingCondition }
Defines the input needed to run a training job using the algorithm.
type TrainingJobEarlyStoppingType ¶
type TrainingJobEarlyStoppingType string
const ( TrainingJobEarlyStoppingTypeOff TrainingJobEarlyStoppingType = "Off" TrainingJobEarlyStoppingTypeAuto TrainingJobEarlyStoppingType = "Auto" )
Enum values for TrainingJobEarlyStoppingType
type TrainingJobSortByOptions ¶
type TrainingJobSortByOptions string
const ( TrainingJobSortByOptionsName TrainingJobSortByOptions = "Name" TrainingJobSortByOptionsCreationtime TrainingJobSortByOptions = "CreationTime" TrainingJobSortByOptionsStatus TrainingJobSortByOptions = "Status" TrainingJobSortByOptionsFinalobjectivemetricvalue TrainingJobSortByOptions = "FinalObjectiveMetricValue" )
Enum values for TrainingJobSortByOptions
type TrainingJobStatus ¶
type TrainingJobStatus string
const ( TrainingJobStatusIn_progress TrainingJobStatus = "InProgress" TrainingJobStatusCompleted TrainingJobStatus = "Completed" TrainingJobStatusFailed TrainingJobStatus = "Failed" TrainingJobStatusStopping TrainingJobStatus = "Stopping" TrainingJobStatusStopped TrainingJobStatus = "Stopped" )
Enum values for TrainingJobStatus
type TrainingJobStatusCounters ¶
type TrainingJobStatusCounters struct { // The number of training jobs that failed, but can be retried. A failed training // job can be retried only if it failed because an internal service error occurred. RetryableError *int32 // The number of training jobs that failed and can't be retried. A failed training // job can't be retried if it failed because a client error occurred. NonRetryableError *int32 // The number of completed training jobs launched by the hyperparameter tuning job. Completed *int32 // The number of training jobs launched by a hyperparameter tuning job that were // manually stopped. Stopped *int32 // The number of in-progress training jobs launched by a hyperparameter tuning job. InProgress *int32 }
The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.
type TrainingJobSummary ¶
type TrainingJobSummary struct { // The status of the training job. // // This member is required. TrainingJobStatus TrainingJobStatus // The Amazon Resource Name (ARN) of the training job. // // This member is required. TrainingJobArn *string // A timestamp that shows when the training job ended. This field is set only if // the training job has one of the terminal statuses (Completed, Failed, or // Stopped). TrainingEndTime *time.Time // Timestamp when the training job was last modified. LastModifiedTime *time.Time // The name of the training job that you want a summary for. // // This member is required. TrainingJobName *string // A timestamp that shows when the training job was created. // // This member is required. CreationTime *time.Time }
Provides summary information about a training job.
type TrainingSpecification ¶
type TrainingSpecification struct { // A list of the metrics that the algorithm emits that can be used as the objective // metric in a hyperparameter tuning job. SupportedTuningJobObjectiveMetrics []*HyperParameterTuningJobObjective // A list of ChannelSpecification objects, which specify the input sources to be // used by the algorithm. // // This member is required. TrainingChannels []*ChannelSpecification // Indicates whether the algorithm supports distributed training. If set to false, // buyers can't request more than one instance during training. SupportsDistributedTraining *bool // A list of the HyperParameterSpecification objects, that define the supported // hyperparameters. This is required if the algorithm supports automatic model // tuning.> SupportedHyperParameters []*HyperParameterSpecification // A list of MetricDefinition objects, which are used for parsing metrics generated // by the algorithm. MetricDefinitions []*MetricDefinition // The Amazon ECR registry path of the Docker image that contains the training // algorithm. // // This member is required. TrainingImage *string // An MD5 hash of the training algorithm that identifies the Docker image used for // training. TrainingImageDigest *string // A list of the instance types that this algorithm can use for training. // // This member is required. SupportedTrainingInstanceTypes []TrainingInstanceType }
Defines how the algorithm is used for a training job.
type TransformDataSource ¶
type TransformDataSource struct { // The S3 location of the data source that is associated with a channel. // // This member is required. S3DataSource *TransformS3DataSource }
Describes the location of the channel data.
type TransformInput ¶
type TransformInput struct { // If your transform data is compressed, specify the compression type. Amazon // SageMaker automatically decompresses the data for the transform job accordingly. // The default value is None. CompressionType CompressionType // Describes the location of the channel data, which is, the S3 location of the // input data that the model can consume. // // This member is required. DataSource *TransformDataSource // The multipurpose internet mail extension (MIME) type of the data. Amazon // SageMaker uses the MIME type with each http call to transfer data to the // transform job. ContentType *string // The method to use to split the transform job's data files into smaller batches. // Splitting is necessary when the total size of each object is too large to fit in // a single request. You can also use data splitting to improve performance by // processing multiple concurrent mini-batches. The default value for SplitType is // None, which indicates that input data files are not split, and request payloads // contain the entire contents of an input object. Set the value of this parameter // to Line to split records on a newline character boundary. SplitType also // supports a number of record-oriented binary data formats. When splitting is // enabled, the size of a mini-batch depends on the values of the BatchStrategy and // MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, // Amazon SageMaker sends the maximum number of records in each request, up to the // MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon // SageMaker sends individual records in each request. Some data formats represent // a record as a binary payload wrapped with extra padding bytes. When splitting is // applied to a binary data format, padding is removed if the value of // BatchStrategy is set to SingleRecord. Padding is not removed if the value of // BatchStrategy is set to MultiRecord. For more information about RecordIO, see // Create a Dataset Using RecordIO (https://mxnet.apache.org/api/faq/recordio) in // the MXNet documentation. For more information about TFRecord, see Consuming // TFRecord data // (https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data) in the // TensorFlow documentation. SplitType SplitType }
Describes the input source of a transform job and the way the transform job consumes it.
type TransformInstanceType ¶
type TransformInstanceType string
const ( TransformInstanceTypeMl_m4_xlarge TransformInstanceType = "ml.m4.xlarge" TransformInstanceTypeMl_m4_2xlarge TransformInstanceType = "ml.m4.2xlarge" TransformInstanceTypeMl_m4_4xlarge TransformInstanceType = "ml.m4.4xlarge" TransformInstanceTypeMl_m4_10xlarge TransformInstanceType = "ml.m4.10xlarge" TransformInstanceTypeMl_m4_16xlarge TransformInstanceType = "ml.m4.16xlarge" TransformInstanceTypeMl_c4_xlarge TransformInstanceType = "ml.c4.xlarge" TransformInstanceTypeMl_c4_2xlarge TransformInstanceType = "ml.c4.2xlarge" TransformInstanceTypeMl_c4_4xlarge TransformInstanceType = "ml.c4.4xlarge" TransformInstanceTypeMl_c4_8xlarge TransformInstanceType = "ml.c4.8xlarge" TransformInstanceTypeMl_p2_xlarge TransformInstanceType = "ml.p2.xlarge" TransformInstanceTypeMl_p2_8xlarge TransformInstanceType = "ml.p2.8xlarge" TransformInstanceTypeMl_p2_16xlarge TransformInstanceType = "ml.p2.16xlarge" TransformInstanceTypeMl_p3_2xlarge TransformInstanceType = "ml.p3.2xlarge" TransformInstanceTypeMl_p3_8xlarge TransformInstanceType = "ml.p3.8xlarge" TransformInstanceTypeMl_p3_16xlarge TransformInstanceType = "ml.p3.16xlarge" TransformInstanceTypeMl_c5_xlarge TransformInstanceType = "ml.c5.xlarge" TransformInstanceTypeMl_c5_2xlarge TransformInstanceType = "ml.c5.2xlarge" TransformInstanceTypeMl_c5_4xlarge TransformInstanceType = "ml.c5.4xlarge" TransformInstanceTypeMl_c5_9xlarge TransformInstanceType = "ml.c5.9xlarge" TransformInstanceTypeMl_c5_18xlarge TransformInstanceType = "ml.c5.18xlarge" TransformInstanceTypeMl_m5_large TransformInstanceType = "ml.m5.large" TransformInstanceTypeMl_m5_xlarge TransformInstanceType = "ml.m5.xlarge" TransformInstanceTypeMl_m5_2xlarge TransformInstanceType = "ml.m5.2xlarge" TransformInstanceTypeMl_m5_4xlarge TransformInstanceType = "ml.m5.4xlarge" TransformInstanceTypeMl_m5_12xlarge TransformInstanceType = "ml.m5.12xlarge" TransformInstanceTypeMl_m5_24xlarge TransformInstanceType = "ml.m5.24xlarge" )
Enum values for TransformInstanceType
type TransformJob ¶
type TransformJob struct { // Describes the results of a transform job. TransformOutput *TransformOutput // The name of the model associated with the transform job. ModelName *string // The maximum allowed size of the payload, in MB. A payload is the data portion of // a record (without metadata). The value in MaxPayloadInMB must be greater than, // or equal to, the size of a single record. To estimate the size of a record in // MB, divide the size of your dataset by the number of records. To ensure that the // records fit within the maximum payload size, we recommend using a slightly // larger value. The default value is 6 MB. For cases where the payload might be // arbitrarily large and is transmitted using HTTP chunked encoding, set the value // to 0. This feature works only in supported algorithms. Currently, SageMaker // built-in algorithms do not support HTTP chunked encoding. MaxPayloadInMB *int32 // The environment variables to set in the Docker container. We support up to 16 // key and values entries in the map. Environment map[string]*string // A timestamp that shows when the transform Job was created. CreationTime *time.Time // Specifies the number of records to include in a mini-batch for an HTTP inference // request. A record is a single unit of input data that inference can be made on. // For example, a single line in a CSV file is a record. BatchStrategy BatchStrategy // The name of the transform job. TransformJobName *string // A list of tags associated with the transform job. Tags []*Tag // Describes the resources, including ML instance types and ML instance count, to // use for transform job. TransformResources *TransformResources // Indicates when the transform job starts on ML instances. You are billed for the // time interval between this time and the value of TransformEndTime. TransformStartTime *time.Time // Configures the timeout and maximum number of retries for processing a transform // job invocation. ModelClientConfig *ModelClientConfig // The maximum number of parallel requests that can be sent to each instance in a // transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker // checks the optional execution-parameters to determine the settings for your // chosen algorithm. If the execution-parameters endpoint is not enabled, the // default value is 1. For built-in algorithms, you don't need to set a value for // MaxConcurrentTransforms. MaxConcurrentTransforms *int32 // The Amazon Resource Name (ARN) of the labeling job that created the transform // job. LabelingJobArn *string // Associates a SageMaker job as a trial component with an experiment and trial. // Specified when you call the following APIs: // // * CreateProcessingJob () // // * // CreateTrainingJob () // // * CreateTransformJob () ExperimentConfig *ExperimentConfig // The Amazon Resource Name (ARN) of the AutoML job that created the transform job. AutoMLJobArn *string // If the transform job failed, the reason it failed. FailureReason *string // Describes the input source of a transform job and the way the transform job // consumes it. TransformInput *TransformInput // The status of the transform job. Transform job statuses are: // // * InProgress - // The job is in progress. // // * Completed - The job has completed. // // * Failed // - The transform job has failed. To see the reason for the failure, see the // FailureReason field in the response to a DescribeTransformJob call. // // * // Stopping - The transform job is stopping. // // * Stopped - The transform job has // stopped. TransformJobStatus TransformJobStatus // The Amazon Resource Name (ARN) of the transform job. TransformJobArn *string // Indicates when the transform job has been completed, or has stopped or failed. // You are billed for the time interval between this time and the value of // TransformStartTime. TransformEndTime *time.Time // The data structure used to specify the data to be used for inference in a batch // transform job and to associate the data that is relevant to the prediction // results in the output. The input filter provided allows you to exclude input // data that is not needed for inference in a batch transform job. The output // filter provided allows you to include input data relevant to interpreting the // predictions in the output from the job. For more information, see Associate // Prediction Results with their Corresponding Input Records // (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html). DataProcessing *DataProcessing }
A batch transform job. For information about SageMaker batch transform, see Use Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html).
type TransformJobDefinition ¶
type TransformJobDefinition struct { // The environment variables to set in the Docker container. We support up to 16 // key and values entries in the map. Environment map[string]*string // A string that determines the number of records included in a single mini-batch. // SingleRecord means only one record is used per mini-batch. MultiRecord means a // mini-batch is set to contain as many records that can fit within the // MaxPayloadInMB limit. BatchStrategy BatchStrategy // A description of the input source and the way the transform job consumes it. // // This member is required. TransformInput *TransformInput // The maximum number of parallel requests that can be sent to each instance in a // transform job. The default value is 1. MaxConcurrentTransforms *int32 // Identifies the Amazon S3 location where you want Amazon SageMaker to save the // results from the transform job. // // This member is required. TransformOutput *TransformOutput // Identifies the ML compute instances for the transform job. // // This member is required. TransformResources *TransformResources // The maximum payload size allowed, in MB. A payload is the data portion of a // record (without metadata). MaxPayloadInMB *int32 }
Defines the input needed to run a transform job using the inference specification specified in the algorithm.
type TransformJobStatus ¶
type TransformJobStatus string
const ( TransformJobStatusIn_progress TransformJobStatus = "InProgress" TransformJobStatusCompleted TransformJobStatus = "Completed" TransformJobStatusFailed TransformJobStatus = "Failed" TransformJobStatusStopping TransformJobStatus = "Stopping" TransformJobStatusStopped TransformJobStatus = "Stopped" )
Enum values for TransformJobStatus
type TransformJobSummary ¶
type TransformJobSummary struct { // If the transform job failed, the reason it failed. FailureReason *string // The status of the transform job. // // This member is required. TransformJobStatus TransformJobStatus // Indicates when the transform job ends on compute instances. For successful jobs // and stopped jobs, this is the exact time recorded after the results are // uploaded. For failed jobs, this is when Amazon SageMaker detected that the job // failed. TransformEndTime *time.Time // Indicates when the transform job was last modified. LastModifiedTime *time.Time // A timestamp that shows when the transform Job was created. // // This member is required. CreationTime *time.Time // The Amazon Resource Name (ARN) of the transform job. // // This member is required. TransformJobArn *string // The name of the transform job. // // This member is required. TransformJobName *string }
Provides a summary of a transform job. Multiple TransformJobSummary objects are returned as a list after in response to a ListTransformJobs () call.
type TransformOutput ¶
type TransformOutput struct { // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt the model artifacts at rest using Amazon S3 server-side encryption. The // KmsKeyId can be any of the following formats: // // * Key ID: // 1234abcd-12ab-34cd-56ef-1234567890ab // // * Key ARN: // arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab // // // * Alias name: alias/ExampleAlias // // * Alias name ARN: // arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias // // <p>If you don't // provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 // for your role's account. For more information, see <a // href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed // Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> // </p> <p>The KMS key policy must grant permission to the IAM role that you // specify in your <a>CreateModel</a> request. For more information, see <a // href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using // Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer // Guide</i>.</p> KmsKeyId *string // Defines how to assemble the results of the transform job as a single S3 object. // Choose a format that is most convenient to you. To concatenate the results in // binary format, specify None. To add a newline character at the end of every // transformed record, specify Line. AssembleWith AssemblyType // The MIME type used to specify the output data. Amazon SageMaker uses the MIME // type with each http call to transfer data from the transform job. Accept *string // The Amazon S3 path where you want Amazon SageMaker to store the results of the // transform job. For example, s3://bucket-name/key-name-prefix. For every S3 // object used as input for the transform job, batch transform stores the // transformed data with an .out suffix in a corresponding subfolder in the // location in the output prefix. For example, for the input data stored at // s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores // the transformed data at // s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch // transform doesn't upload partially processed objects. For an input S3 object // that contains multiple records, it creates an .out file only if the transform // job succeeds on the entire file. When the input contains multiple S3 objects, // the batch transform job processes the listed S3 objects and uploads only the // output for successfully processed objects. If any object fails in the transform // job batch transform marks the job as failed to prompt investigation. // // This member is required. S3OutputPath *string }
Describes the results of a transform job.
type TransformResources ¶
type TransformResources struct { // The number of ML compute instances to use in the transform job. For distributed // transform jobs, specify a value greater than 1. The default value is 1. // // This member is required. InstanceCount *int32 // The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to // encrypt model data on the storage volume attached to the ML compute instance(s) // that run the batch transform job. The VolumeKmsKeyId can be any of the following // formats: // // * Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab // // * Key ARN: // arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab // // // * Alias name: alias/ExampleAlias // // * Alias name ARN: // arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias VolumeKmsKeyId *string // The ML compute instance type for the transform job. If you are using built-in // algorithms to transform moderately sized datasets, we recommend using // ml.m4.xlarge or ml.m5.large instance types. // // This member is required. InstanceType TransformInstanceType }
Describes the resources, including ML instance types and ML instance count, to use for transform job.
type TransformS3DataSource ¶
type TransformS3DataSource struct { // Depending on the value specified for the S3DataType, identifies either a key // name prefix or a manifest. For example: // // * A key name prefix might look like // this: s3://bucketname/exampleprefix. // // * A manifest might look like this: // s3://bucketname/example.manifest The manifest is an S3 object which is a JSON // file with the following format: [ {"prefix": // "s3://customer_bucket/some/prefix/"},"relative/path/to/custdata-1","relative/path/custdata-2",..."relative/path/custdata-N"] // The preceding JSON matches the following S3Uris: // s3://customer_bucket/some/prefix/relative/path/to/custdata-1s3://customer_bucket/some/prefix/relative/path/custdata-2...s3://customer_bucket/some/prefix/relative/path/custdata-N // The complete set of S3Uris in this manifest constitutes the input data for the // channel for this datasource. The object that each S3Uris points to must be // readable by the IAM role that Amazon SageMaker uses to perform tasks on your // behalf. // // This member is required. S3Uri *string // If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker // uses all objects with the specified key name prefix for batch transform. If you // choose ManifestFile, S3Uri identifies an object that is a manifest file // containing a list of object keys that you want Amazon SageMaker to use for batch // transform. The following values are compatible: ManifestFile, S3Prefix The // following value is not compatible: AugmentedManifestFile // // This member is required. S3DataType S3DataType }
Describes the S3 data source.
type Trial ¶
type Trial struct { // The name of the experiment the trial is part of. ExperimentName *string // When the trial was created. CreationTime *time.Time // The Amazon Resource Name (ARN) of the trial. TrialArn *string // The name of the trial. TrialName *string // The source of the trial. Source *TrialSource // Who last modified the trial. LastModifiedTime *time.Time // The name of the trial as displayed. If DisplayName isn't specified, TrialName is // displayed. DisplayName *string // Information about the user who created or modified an experiment, trial, or // trial component. CreatedBy *UserContext // The list of tags that are associated with the trial. You can use Search () API // to search on the tags. Tags []*Tag // A list of the components associated with the trial. For each component, a // summary of the component's properties is included. TrialComponentSummaries []*TrialComponentSimpleSummary // Information about the user who created or modified an experiment, trial, or // trial component. LastModifiedBy *UserContext }
The properties of a trial as returned by the Search () API.
type TrialComponent ¶
type TrialComponent struct { // When the component ended. EndTime *time.Time // When the component was created. CreationTime *time.Time // When the component was last modified. LastModifiedTime *time.Time // Information about the user who created or modified an experiment, trial, or // trial component. LastModifiedBy *UserContext // The name of the trial component. TrialComponentName *string // The metrics for the component. Metrics []*TrialComponentMetricSummary // Information about the user who created or modified an experiment, trial, or // trial component. CreatedBy *UserContext // The hyperparameters of the component. Parameters map[string]*TrialComponentParameterValue // An array of the parents of the component. A parent is a trial the component is // associated with and the experiment the trial is part of. A component might not // have any parents. Parents []*Parent // The input artifacts of the component. InputArtifacts map[string]*TrialComponentArtifact // When the component started. StartTime *time.Time // The Amazon Resource Name (ARN) of the trial component. TrialComponentArn *string // Details of the source of the component. SourceDetail *TrialComponentSourceDetail // The list of tags that are associated with the component. You can use Search () // API to search on the tags. Tags []*Tag // The Amazon Resource Name (ARN) and job type of the source of the component. Source *TrialComponentSource // The name of the component as displayed. If DisplayName isn't specified, // TrialComponentName is displayed. DisplayName *string // The output artifacts of the component. OutputArtifacts map[string]*TrialComponentArtifact // The status of the trial component. Status *TrialComponentStatus }
The properties of a trial component as returned by the Search () API.
type TrialComponentArtifact ¶
type TrialComponentArtifact struct { // The location of the artifact. // // This member is required. Value *string // The media type of the artifact, which indicates the type of data in the artifact // file. The media type consists of a type and a subtype concatenated with a slash // (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies // the category of the media. The subtype specifies the kind of data. MediaType *string }
Represents an input or output artifact of a trial component. You specify TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts parameters in the CreateTrialComponent () request. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.
type TrialComponentMetricSummary ¶
type TrialComponentMetricSummary struct { // When the metric was last updated. TimeStamp *time.Time // The Amazon Resource Name (ARN) of the source. SourceArn *string // The most recent value of the metric. Last *float64 // The number of samples used to generate the metric. Count *int32 // The minimum value of the metric. Min *float64 // The average value of the metric. Avg *float64 // The standard deviation of the metric. StdDev *float64 // The maximum value of the metric. Max *float64 // The name of the metric. MetricName *string }
A summary of the metrics of a trial component.
type TrialComponentParameterValue ¶
type TrialComponentParameterValue struct { // The string value of a categorical hyperparameter. If you specify a value for // this parameter, you can't specify the NumberValue parameter. StringValue *string // The numeric value of a numeric hyperparameter. If you specify a value for this // parameter, you can't specify the StringValue parameter. NumberValue *float64 }
The value of a hyperparameter. Only one of NumberValue or StringValue can be specified. This object is specified in the CreateTrialComponent () request.
type TrialComponentPrimaryStatus ¶
type TrialComponentPrimaryStatus string
const ( TrialComponentPrimaryStatusIn_progress TrialComponentPrimaryStatus = "InProgress" TrialComponentPrimaryStatusCompleted TrialComponentPrimaryStatus = "Completed" TrialComponentPrimaryStatusFailed TrialComponentPrimaryStatus = "Failed" TrialComponentPrimaryStatusStopping TrialComponentPrimaryStatus = "Stopping" TrialComponentPrimaryStatusStopped TrialComponentPrimaryStatus = "Stopped" )
Enum values for TrialComponentPrimaryStatus
type TrialComponentSimpleSummary ¶
type TrialComponentSimpleSummary struct { // The Amazon Resource Name (ARN) and job type of the source of a trial component. TrialComponentSource *TrialComponentSource // When the component was created. CreationTime *time.Time // The name of the trial component. TrialComponentName *string // The Amazon Resource Name (ARN) of the trial component. TrialComponentArn *string // Information about the user who created or modified an experiment, trial, or // trial component. CreatedBy *UserContext }
A short summary of a trial component.
type TrialComponentSource ¶
type TrialComponentSource struct { // The source ARN. // // This member is required. SourceArn *string // The source job type. SourceType *string }
The Amazon Resource Name (ARN) and job type of the source of a trial component.
type TrialComponentSourceDetail ¶
type TrialComponentSourceDetail struct { // Information about a processing job that's the source of a trial component. ProcessingJob *ProcessingJob // The Amazon Resource Name (ARN) of the source. SourceArn *string // Information about a training job that's the source of a trial component. TrainingJob *TrainingJob // Information about a transform job that's the source of the trial component. TransformJob *TransformJob }
Detailed information about the source of a trial component. Either ProcessingJob or TrainingJob is returned.
type TrialComponentStatus ¶
type TrialComponentStatus struct { // The status of the trial component. PrimaryStatus TrialComponentPrimaryStatus // If the component failed, a message describing why. Message *string }
The status of the trial component.
type TrialComponentSummary ¶
type TrialComponentSummary struct { // The status of the component. States include: // // * InProgress // // * // Completed // // * Failed Status *TrialComponentStatus // Who last modified the component. LastModifiedBy *UserContext // Who created the component. CreatedBy *UserContext // When the component was created. CreationTime *time.Time // When the component was last modified. LastModifiedTime *time.Time // When the component started. StartTime *time.Time // The name of the trial component. TrialComponentName *string // When the component ended. EndTime *time.Time // The ARN of the trial component. TrialComponentArn *string // The Amazon Resource Name (ARN) and job type of the source of a trial component. TrialComponentSource *TrialComponentSource // The name of the component as displayed. If DisplayName isn't specified, // TrialComponentName is displayed. DisplayName *string }
A summary of the properties of a trial component. To get all the properties, call the DescribeTrialComponent () API and provide the TrialComponentName.
type TrialSource ¶
type TrialSource struct { // The source job type. SourceType *string // The Amazon Resource Name (ARN) of the source. // // This member is required. SourceArn *string }
The source of the trial.
type TrialSummary ¶
type TrialSummary struct { // The name of the trial. TrialName *string // The source of the trial. TrialSource *TrialSource // When the trial was created. CreationTime *time.Time // When the trial was last modified. LastModifiedTime *time.Time // The Amazon Resource Name (ARN) of the trial. TrialArn *string // The name of the trial as displayed. If DisplayName isn't specified, TrialName is // displayed. DisplayName *string }
A summary of the properties of a trial. To get the complete set of properties, call the DescribeTrial () API and provide the TrialName.
type TuningJobCompletionCriteria ¶
type TuningJobCompletionCriteria struct { // The objective metric's value. // // This member is required. TargetObjectiveMetricValue *float32 }
The job completion criteria.
type USD ¶
type USD struct { // The whole number of dollars in the amount. Dollars *int32 // Fractions of a cent, in tenths. TenthFractionsOfACent *int32 // The fractional portion, in cents, of the amount. Cents *int32 }
Represents an amount of money in United States dollars/
type UiConfig ¶
type UiConfig struct { // The ARN of the worker task template used to render the worker UI and tools for // labeling job tasks. Use this parameter when you are creating a labeling job for // 3D point cloud and video fram labeling jobs. Use your labeling job task type to // select one of the following ARN's and use it with this parameter when you create // a labeling job. Replace aws-region with the AWS region you are creating your // labeling job in. <p> <b>3D Point Cloud HumanTaskUiArns</b> </p> <p>Use this // <code>HumanTaskUiArn</code> for 3D point cloud object detection and 3D point // cloud object detection adjustment labeling jobs. </p> <ul> <li> <p> // <code>arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection</code> // </p> </li> </ul> <p> Use this <code>HumanTaskUiArn</code> for 3D point cloud // object tracking and 3D point cloud object tracking adjustment labeling jobs. // </p> <ul> <li> <p> // <code>arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking</code> // </p> </li> </ul> <p> Use this <code>HumanTaskUiArn</code> for 3D point cloud // semantic segmentation and 3D point cloud semantic segmentation adjustment // labeling jobs.</p> <ul> <li> <p> // <code>arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation</code> // </p> </li> </ul> <p> <b>Video Frame HumanTaskUiArns</b> </p> <p>Use this // <code>HumanTaskUiArn</code> for video frame object detection and video frame // object detection adjustment labeling jobs. </p> <ul> <li> <p> // <code>arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection</code> // </p> </li> </ul> <p> Use this <code>HumanTaskUiArn</code> for video frame object // tracking and video frame object tracking adjustment labeling jobs. </p> <ul> // <li> <p> // <code>arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking</code> // </p> </li> </ul> HumanTaskUiArn *string // The Amazon S3 bucket location of the UI template, or worker task template. This // is the template used to render the worker UI and tools for labeling job tasks. // For more information about the contents of a UI template, see Creating Your // Custom Labeling Task Template // (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html). UiTemplateS3Uri *string }
Provided configuration information for the worker UI for a labeling job.
type UiTemplate ¶
type UiTemplate struct { // The content of the Liquid template for the worker user interface. // // This member is required. Content *string }
The Liquid template for the worker user interface.
type UiTemplateInfo ¶
type UiTemplateInfo struct { // The SHA-256 digest of the contents of the template. ContentSha256 *string // The URL for the user interface template. Url *string }
Container for user interface template information.
type UserContext ¶
type UserContext struct { // The domain associated with the user. DomainId *string // The name of the user's profile. UserProfileName *string // The Amazon Resource Name (ARN) of the user's profile. UserProfileArn *string }
Information about the user who created or modified an experiment, trial, or trial component.
type UserProfileDetails ¶
type UserProfileDetails struct { // The user profile name. UserProfileName *string // The status. Status UserProfileStatus // The domain ID. DomainId *string // The last modified time. LastModifiedTime *time.Time // The creation time. CreationTime *time.Time }
The user profile details.
type UserProfileSortKey ¶
type UserProfileSortKey string
const ( UserProfileSortKeyCreationtime UserProfileSortKey = "CreationTime" UserProfileSortKeyLastmodifiedtime UserProfileSortKey = "LastModifiedTime" )
Enum values for UserProfileSortKey
type UserProfileStatus ¶
type UserProfileStatus string
const ( UserProfileStatusDeleting UserProfileStatus = "Deleting" UserProfileStatusFailed UserProfileStatus = "Failed" UserProfileStatusInservice UserProfileStatus = "InService" UserProfileStatusPending UserProfileStatus = "Pending" )
Enum values for UserProfileStatus
type UserSettings ¶
type UserSettings struct { // The execution role for the user. ExecutionRole *string // The Jupyter server's app settings. JupyterServerAppSettings *JupyterServerAppSettings // The TensorBoard app settings. TensorBoardAppSettings *TensorBoardAppSettings // The kernel gateway app settings. KernelGatewayAppSettings *KernelGatewayAppSettings // The sharing settings. SharingSettings *SharingSettings // The security groups. SecurityGroups []*string }
A collection of settings.
type VariantProperty ¶
type VariantProperty struct { // The type of variant property. The supported values are: // // * // DesiredInstanceCount: Overrides the existing variant instance counts using the // ProductionVariant$InitialInstanceCount () values in the // CreateEndpointConfigInput$ProductionVariants (). // // * DesiredWeight: Overrides // the existing variant weights using the ProductionVariant$InitialVariantWeight () // values in the CreateEndpointConfigInput$ProductionVariants (). // // * // DataCaptureConfig: (Not currently supported.) // // This member is required. VariantPropertyType VariantPropertyType }
Specifies a production variant property type for an Endpoint. If you are updating an endpoint with the UpdateEndpointInput$RetainAllVariantProperties () option set to true, the VariantProperty objects listed in UpdateEndpointInput$ExcludeRetainedVariantProperties () override the existing variant properties of the endpoint.
type VariantPropertyType ¶
type VariantPropertyType string
const ( VariantPropertyTypeDesiredinstancecount VariantPropertyType = "DesiredInstanceCount" VariantPropertyTypeDesiredweight VariantPropertyType = "DesiredWeight" VariantPropertyTypeDatacaptureconfig VariantPropertyType = "DataCaptureConfig" )
Enum values for VariantPropertyType
type VpcConfig ¶
type VpcConfig struct { // The ID of the subnets in the VPC to which you want to connect your training job // or model. For information about the availability of specific instance types, see // Supported Instance Types and Availability Zones // (https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html). // // This member is required. Subnets []*string // The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups // for the VPC that is specified in the Subnets field. // // This member is required. SecurityGroupIds []*string }
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html) and Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html).
type Workforce ¶
type Workforce struct { // The configuration of an OIDC Identity Provider (IdP) private workforce. OidcConfig *OidcConfigForResponse // The name of the private workforce. // // This member is required. WorkforceName *string // The most recent date that was used to successfully add one or more IP address // ranges (CIDRs // (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)) to a // private workforce's allow list. LastUpdatedDate *time.Time // The subdomain for your OIDC Identity Provider. SubDomain *string // The configuration of an Amazon Cognito workforce. A single Cognito workforce is // created using and corresponds to a single Amazon Cognito user pool // (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html). CognitoConfig *CognitoConfig // A list of one to ten IP address ranges (CIDRs // (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)) to be added // to the workforce allow list. SourceIpConfig *SourceIpConfig // The date that the workforce is created. CreateDate *time.Time // The Amazon Resource Name (ARN) of the private workforce. // // This member is required. WorkforceArn *string }
A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html).
type Workteam ¶
type Workteam struct { // The date and time that the work team was last updated (timestamp). LastUpdatedDate *time.Time // The date and time that the work team was created (timestamp). CreateDate *time.Time // The URI of the labeling job's user interface. Workers open this URI to start // labeling your data objects. SubDomain *string // A description of the work team. // // This member is required. Description *string // The Amazon Resource Name (ARN) that identifies the work team. // // This member is required. WorkteamArn *string // The Amazon Marketplace identifier for a vendor's work team. ProductListingIds []*string // Configures SNS notifications of available or expiring work items for work teams. NotificationConfiguration *NotificationConfiguration // The Amazon Resource Name (ARN) of the workforce. WorkforceArn *string // The Amazon Cognito user groups that make up the work team. // // This member is required. MemberDefinitions []*MemberDefinition // The name of the work team. // // This member is required. WorkteamName *string }
Provides details about a labeling work team.
Source Files ¶
- Version
- v0.26.0
- Published
- Oct 1, 2020
- Platform
- windows/amd64
- Imports
- 3 packages
- Last checked
- 9 hours ago –
Tools for package owners.