package types

import "github.com/aws/aws-sdk-go-v2/service/rekognition/types"

Index

Types

type AccessDeniedException

type AccessDeniedException struct {
	Message *string

	Logref *string
	Code   *string
}

You are not authorized to perform the action.

func (*AccessDeniedException) Error

func (e *AccessDeniedException) Error() string

func (*AccessDeniedException) ErrorCode

func (e *AccessDeniedException) ErrorCode() string

func (*AccessDeniedException) ErrorFault

func (e *AccessDeniedException) ErrorFault() smithy.ErrorFault

func (*AccessDeniedException) ErrorMessage

func (e *AccessDeniedException) ErrorMessage() string

func (*AccessDeniedException) GetCode

func (e *AccessDeniedException) GetCode() string

func (*AccessDeniedException) GetLogref

func (e *AccessDeniedException) GetLogref() string

func (*AccessDeniedException) GetMessage

func (e *AccessDeniedException) GetMessage() string

func (*AccessDeniedException) HasCode

func (e *AccessDeniedException) HasCode() bool

func (*AccessDeniedException) HasLogref

func (e *AccessDeniedException) HasLogref() bool

func (*AccessDeniedException) HasMessage

func (e *AccessDeniedException) HasMessage() bool

type AgeRange

type AgeRange struct {
	// The highest estimated age.
	High *int32
	// The lowest estimated age.
	Low *int32
}

Structure containing the estimated age range, in years, for a face. Amazon Rekognition estimates an age range for faces detected in the input image. Estimated age ranges can overlap. A face of a 5-year-old might have an estimated range of 4-6, while the face of a 6-year-old might have an estimated range of 4-8.

type Asset

type Asset struct {
	// The S3 bucket that contains the Ground Truth manifest file.
	GroundTruthManifest *GroundTruthManifest
}

Assets are the images that you use to train and evaluate a model version. Assets are referenced by Sagemaker GroundTruth manifest files.

type Attribute

type Attribute string
const (
	AttributeDefault Attribute = "DEFAULT"
	AttributeAll     Attribute = "ALL"
)

Enum values for Attribute

type AudioMetadata

type AudioMetadata struct {
	// The number of audio channels in the segement.
	NumberOfChannels *int64
	// The duration of the audio stream in milliseconds.
	DurationMillis *int64
	// The audio codec used to encode or decode the audio stream.
	Codec *string
	// The sample rate for the audio stream.
	SampleRate *int64
}

Metadata information about an audio stream. An array of AudioMetadata objects for the audio streams found in a stored video is returned by GetSegmentDetection ().

type Beard

type Beard struct {
	// Boolean value that indicates whether the face has beard or not.
	Value *bool
	// Level of confidence in the determination.
	Confidence *float32
}

Indicates whether or not the face has a beard, and the confidence level in the determination.

type BoundingBox

type BoundingBox struct {
	// Width of the bounding box as a ratio of the overall image width.
	Width *float32
	// Height of the bounding box as a ratio of the overall image height.
	Height *float32
	// Left coordinate of the bounding box as a ratio of overall image width.
	Left *float32
	// Top coordinate of the bounding box as a ratio of overall image height.
	Top *float32
}

Identifies the bounding box around the label, face, or text. The left (x-coordinate) and top (y-coordinate) are coordinates representing the top and left sides of the bounding box. Note that the upper-left corner of the image is the origin (0,0). The top and left values returned are ratios of the overall image size. For example, if the input image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API returns a left value of 0.5 (350/700) and a top value of 0.25 (50/200). The width and height values represent the dimensions of the bounding box as a ratio of the overall image dimension. For example, if the input image is 700x200 pixels, and the bounding box width is 70 pixels, the width returned is 0.1. The bounding box coordinates can have negative values. For example, if Amazon Rekognition is able to detect a face that is at the image edge and is only partially visible, the service can return coordinates that are outside the image bounds and, depending on the image edge, you might get negative values or values greater than 1 for the left or top values.

type Celebrity

type Celebrity struct {
	// A unique identifier for the celebrity.
	Id *string
	// The confidence, in percentage, that Amazon Rekognition has that the recognized
	// face is the celebrity.
	MatchConfidence *float32
	// The name of the celebrity.
	Name *string
	// An array of URLs pointing to additional information about the celebrity. If
	// there is no additional information about the celebrity, this list is empty.
	Urls []*string
	// Provides information about the celebrity's face, such as its location on the
	// image.
	Face *ComparedFace
}

Provides information about a celebrity recognized by the RecognizeCelebrities () operation.

type CelebrityDetail

type CelebrityDetail struct {
	// Bounding box around the body of a celebrity.
	BoundingBox *BoundingBox
	// The name of the celebrity.
	Name *string
	// The confidence, in percentage, that Amazon Rekognition has that the recognized
	// face is the celebrity.
	Confidence *float32
	// An array of URLs pointing to additional celebrity information.
	Urls []*string
	// Face details for the recognized celebrity.
	Face *FaceDetail
	// The unique identifier for the celebrity.
	Id *string
}

Information about a recognized celebrity.

type CelebrityRecognition

type CelebrityRecognition struct {
	// The time, in milliseconds from the start of the video, that the celebrity was
	// recognized.
	Timestamp *int64
	// Information about a recognized celebrity.
	Celebrity *CelebrityDetail
}

Information about a detected celebrity and the time the celebrity was detected in a stored video. For more information, see GetCelebrityRecognition in the Amazon Rekognition Developer Guide.

type CelebrityRecognitionSortBy

type CelebrityRecognitionSortBy string
const (
	CelebrityRecognitionSortById        CelebrityRecognitionSortBy = "ID"
	CelebrityRecognitionSortByTimestamp CelebrityRecognitionSortBy = "TIMESTAMP"
)

Enum values for CelebrityRecognitionSortBy

type CompareFacesMatch

type CompareFacesMatch struct {
	// Level of confidence that the faces match.
	Similarity *float32
	// Provides face metadata (bounding box and confidence that the bounding box
	// actually contains a face).
	Face *ComparedFace
}

Provides information about a face in a target image that matches the source image face analyzed by CompareFaces. The Face property contains the bounding box of the face in the target image. The Similarity property is the confidence that the source image face matches the face in the bounding box.

type ComparedFace

type ComparedFace struct {
	// An array of facial landmarks.
	Landmarks []*Landmark
	// Bounding box of the face.
	BoundingBox *BoundingBox
	// Identifies face image brightness and sharpness.
	Quality *ImageQuality
	// Level of confidence that what the bounding box contains is a face.
	Confidence *float32
	// Indicates the pose of the face as determined by its pitch, roll, and yaw.
	Pose *Pose
}

Provides face metadata for target image faces that are analyzed by CompareFaces and RecognizeCelebrities.

type ComparedSourceImageFace

type ComparedSourceImageFace struct {
	// Confidence level that the selected bounding box contains a face.
	Confidence *float32
	// Bounding box of the face.
	BoundingBox *BoundingBox
}

Type that describes the face Amazon Rekognition chose to compare with the faces in the target. This contains a bounding box for the selected face and confidence level that the bounding box contains a face. Note that Amazon Rekognition selects the largest face in the source image for this comparison.

type ContentClassifier

type ContentClassifier string
const (
	ContentClassifierFree_of_personally_identifiable_information ContentClassifier = "FreeOfPersonallyIdentifiableInformation"
	ContentClassifierFree_of_adult_content                       ContentClassifier = "FreeOfAdultContent"
)

Enum values for ContentClassifier

type ContentModerationDetection

type ContentModerationDetection struct {
	// The unsafe content label detected by in the stored video.
	ModerationLabel *ModerationLabel
	// Time, in milliseconds from the beginning of the video, that the unsafe content
	// label was detected.
	Timestamp *int64
}

Information about an unsafe content label detection in a stored video.

type ContentModerationSortBy

type ContentModerationSortBy string
const (
	ContentModerationSortByName      ContentModerationSortBy = "NAME"
	ContentModerationSortByTimestamp ContentModerationSortBy = "TIMESTAMP"
)

Enum values for ContentModerationSortBy

type CustomLabel

type CustomLabel struct {
	// The name of the custom label.
	Name *string
	// The location of the detected object on the image that corresponds to the custom
	// label. Includes an axis aligned coarse bounding box surrounding the object and a
	// finer grain polygon for more accurate spatial information.
	Geometry *Geometry
	// The confidence that the model has in the detection of the custom label. The
	// range is 0-100. A higher value indicates a higher confidence.
	Confidence *float32
}

A custom label detected in an image by a call to DetectCustomLabels ().

type DetectTextFilters

type DetectTextFilters struct {
	// A set of parameters that allow you to filter out certain results from your
	// returned results.
	WordFilter *DetectionFilter
	// A Filter focusing on a certain area of the image. Uses a BoundingBox object to
	// set the region of the image.
	RegionsOfInterest []*RegionOfInterest
}

A set of optional parameters that you can use to set the criteria that the text must meet to be included in your response. WordFilter looks at a word’s height, width, and minimum confidence. RegionOfInterest lets you set a specific region of the image to look for text in.

type DetectionFilter

type DetectionFilter struct {
	// Sets the minimum height of the word bounding box. Words with bounding box
	// heights lesser than this value will be excluded from the result. Value is
	// relative to the video frame height.
	MinBoundingBoxHeight *float32
	// Sets the minimum width of the word bounding box. Words with bounding boxes
	// widths lesser than this value will be excluded from the result. Value is
	// relative to the video frame width.
	MinBoundingBoxWidth *float32
	// Sets confidence of word detection. Words with detection confidence below this
	// will be excluded from the result. Values should be between 0.5 and 1 as Text in
	// Video will not return any result below 0.5.
	MinConfidence *float32
}

A set of parameters that allow you to filter out certain results from your returned results.

type Emotion

type Emotion struct {
	// Type of emotion detected.
	Type EmotionName
	// Level of confidence in the determination.
	Confidence *float32
}

The emotions that appear to be expressed on the face, and the confidence level in the determination. The API is only making a determination of the physical appearance of a person's face. It is not a determination of the person’s internal emotional state and should not be used in such a way. For example, a person pretending to have a sad face might not be sad emotionally.

type EmotionName

type EmotionName string
const (
	EmotionNameHappy     EmotionName = "HAPPY"
	EmotionNameSad       EmotionName = "SAD"
	EmotionNameAngry     EmotionName = "ANGRY"
	EmotionNameConfused  EmotionName = "CONFUSED"
	EmotionNameDisgusted EmotionName = "DISGUSTED"
	EmotionNameSurprised EmotionName = "SURPRISED"
	EmotionNameCalm      EmotionName = "CALM"
	EmotionNameUnknown   EmotionName = "UNKNOWN"
	EmotionNameFear      EmotionName = "FEAR"
)

Enum values for EmotionName

type EvaluationResult

type EvaluationResult struct {
	// The F1 score for the evaluation of all labels. The F1 score metric evaluates the
	// overall precision and recall performance of the model as a single value. A
	// higher value indicates better precision and recall performance. A lower score
	// indicates that precision, recall, or both are performing poorly.
	F1Score *float32
	// The S3 bucket that contains the training summary.
	Summary *Summary
}

The evaluation results for the training of a model.

type EyeOpen

type EyeOpen struct {
	// Level of confidence in the determination.
	Confidence *float32
	// Boolean value that indicates whether the eyes on the face are open.
	Value *bool
}

Indicates whether or not the eyes on the face are open, and the confidence level in the determination.

type Eyeglasses

type Eyeglasses struct {
	// Level of confidence in the determination.
	Confidence *float32
	// Boolean value that indicates whether the face is wearing eye glasses or not.
	Value *bool
}

Indicates whether or not the face is wearing eye glasses, and the confidence level in the determination.

type Face

type Face struct {
	// Unique identifier that Amazon Rekognition assigns to the face.
	FaceId *string
	// Confidence level that the bounding box contains a face (and not a different
	// object such as a tree).
	Confidence *float32
	// Unique identifier that Amazon Rekognition assigns to the input image.
	ImageId *string
	// Bounding box of the face.
	BoundingBox *BoundingBox
	// Identifier that you assign to all the faces in the input image.
	ExternalImageId *string
}

Describes the face properties such as the bounding box, face ID, image ID of the input image, and external image ID that you assigned.

type FaceAttributes

type FaceAttributes string
const (
	FaceAttributesDefault FaceAttributes = "DEFAULT"
	FaceAttributesAll     FaceAttributes = "ALL"
)

Enum values for FaceAttributes

type FaceDetail

type FaceDetail struct {
	// Indicates whether or not the mouth on the face is open, and the confidence level
	// in the determination.
	MouthOpen *MouthOpen
	// Indicates whether or not the face is wearing sunglasses, and the confidence
	// level in the determination.
	Sunglasses *Sunglasses
	// Indicates whether or not the eyes on the face are open, and the confidence level
	// in the determination.
	EyesOpen *EyeOpen
	// The predicted gender of a detected face.
	Gender *Gender
	// Indicates whether or not the face has a mustache, and the confidence level in
	// the determination.
	Mustache *Mustache
	// Identifies image brightness and sharpness. Default attribute.
	Quality *ImageQuality
	// Indicates whether or not the face is wearing eye glasses, and the confidence
	// level in the determination.
	Eyeglasses *Eyeglasses
	// Confidence level that the bounding box contains a face (and not a different
	// object such as a tree). Default attribute.
	Confidence *float32
	// Indicates whether or not the face is smiling, and the confidence level in the
	// determination.
	Smile *Smile
	// Indicates whether or not the face has a beard, and the confidence level in the
	// determination.
	Beard *Beard
	// The emotions that appear to be expressed on the face, and the confidence level
	// in the determination. The API is only making a determination of the physical
	// appearance of a person's face. It is not a determination of the person’s
	// internal emotional state and should not be used in such a way. For example, a
	// person pretending to have a sad face might not be sad emotionally.
	Emotions []*Emotion
	// Bounding box of the face. Default attribute.
	BoundingBox *BoundingBox
	// Indicates the location of landmarks on the face. Default attribute.
	Landmarks []*Landmark
	// The estimated age range, in years, for the face. Low represents the lowest
	// estimated age and High represents the highest estimated age.
	AgeRange *AgeRange
	// Indicates the pose of the face as determined by its pitch, roll, and yaw.
	// Default attribute.
	Pose *Pose
}

Structure containing attributes of the face that the algorithm detected. A FaceDetail object contains either the default facial attributes or all facial attributes. The default attributes are BoundingBox, Confidence, Landmarks, Pose, and Quality. GetFaceDetection () is the only Amazon Rekognition Video stored video operation that can return a FaceDetail object with all attributes. To specify which attributes to return, use the FaceAttributes input parameter for StartFaceDetection (). The following Amazon Rekognition Video operations return only the default attributes. The corresponding Start operations don't have a FaceAttributes input parameter.

GetPersonTracking

The Amazon Rekognition Image DetectFaces () and IndexFaces () operations can return all facial attributes. To specify which attributes to return, use the Attributes input parameter for DetectFaces. For IndexFaces, use the DetectAttributes input parameter.

type FaceDetection

type FaceDetection struct {
	// Time, in milliseconds from the start of the video, that the face was detected.
	Timestamp *int64
	// The face properties for the detected face.
	Face *FaceDetail
}

Information about a face detected in a video analysis request and the time the face was detected in the video.

type FaceMatch

type FaceMatch struct {
	// Confidence in the match of this face with the input face.
	Similarity *float32
	// Describes the face properties such as the bounding box, face ID, image ID of the
	// source image, and external image ID that you assigned.
	Face *Face
}

Provides face metadata. In addition, it also provides the confidence in the match of this face with the input face.

type FaceRecord

type FaceRecord struct {
	// Describes the face properties such as the bounding box, face ID, image ID of the
	// input image, and external image ID that you assigned.
	Face *Face
	// Structure containing attributes of the face that the algorithm detected.
	FaceDetail *FaceDetail
}

Object containing both the face metadata (stored in the backend database), and facial attributes that are detected but aren't stored in the database.

type FaceSearchSettings

type FaceSearchSettings struct {
	// The ID of a collection that contains faces that you want to search for.
	CollectionId *string
	// Minimum face match confidence score that must be met to return a result for a
	// recognized face. Default is 80. 0 is the lowest confidence. 100 is the highest
	// confidence.
	FaceMatchThreshold *float32
}

Input face recognition parameters for an Amazon Rekognition stream processor. FaceRecognitionSettings is a request parameter for CreateStreamProcessor ().

type FaceSearchSortBy

type FaceSearchSortBy string
const (
	FaceSearchSortByIndex     FaceSearchSortBy = "INDEX"
	FaceSearchSortByTimestamp FaceSearchSortBy = "TIMESTAMP"
)

Enum values for FaceSearchSortBy

type Gender

type Gender struct {
	// Level of confidence in the prediction.
	Confidence *float32
	// The predicted gender of the face.
	Value GenderType
}

The predicted gender of a detected face. <p>Amazon Rekognition makes gender binary (male/female) predictions based on the physical appearance of a face in a particular image. This kind of prediction is not designed to categorize a person’s gender identity, and you shouldn't use Amazon Rekognition to make such a determination. For example, a male actor wearing a long-haired wig and earrings for a role might be predicted as female.</p> <p>Using Amazon Rekognition to make gender binary predictions is best suited for use cases where aggregate gender distribution statistics need to be analyzed without identifying specific users. For example, the percentage of female users compared to male users on a social media platform. </p> <p>We don't recommend using gender binary predictions to make decisions that impact
 an individual's rights, privacy, or access to services.</p>

type GenderType

type GenderType string
const (
	GenderTypeMale   GenderType = "Male"
	GenderTypeFemale GenderType = "Female"
)

Enum values for GenderType

type Geometry

type Geometry struct {
	// Within the bounding box, a fine-grained polygon around the detected item.
	Polygon []*Point
	// An axis-aligned coarse representation of the detected item's location on the
	// image.
	BoundingBox *BoundingBox
}

Information about where an object (DetectCustomLabels ()) or text (DetectText ()) is located on an image.

type GroundTruthManifest

type GroundTruthManifest struct {
	// Provides the S3 bucket name and object name. The region for the S3 bucket
	// containing the S3 object must match the region you use for Amazon Rekognition
	// operations.  <p>For Amazon Rekognition to process an S3 object, the user must
	// have permission to access the S3 object. For more information, see
	// Resource-Based Policies in the Amazon Rekognition Developer Guide. </p>
	S3Object *S3Object
}

The S3 bucket that contains the Ground Truth manifest file.

type HumanLoopActivationOutput

type HumanLoopActivationOutput struct {
	// Shows the result of condition evaluations, including those conditions which
	// activated a human review.
	// This value conforms to the media type: application/json
	HumanLoopActivationConditionsEvaluationResults *string
	// The Amazon Resource Name (ARN) of the HumanLoop created.
	HumanLoopArn *string
	// Shows if and why human review was needed.
	HumanLoopActivationReasons []*string
}

Shows the results of the human in the loop evaluation. If there is no HumanLoopArn, the input did not trigger human review.

type HumanLoopConfig

type HumanLoopConfig struct {
	// Sets attributes of the input data.
	DataAttributes *HumanLoopDataAttributes
	// The name of the human review used for this image. This should be kept unique
	// within a region.
	HumanLoopName *string
	// The Amazon Resource Name (ARN) of the flow definition. You can create a flow
	// definition by using the Amazon Sagemaker CreateFlowDefinition
	// (https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateFlowDefinition.html)
	// Operation.
	FlowDefinitionArn *string
}

Sets up the flow definition the image will be sent to if one of the conditions is met. You can also set certain attributes of the image before review.

type HumanLoopDataAttributes

type HumanLoopDataAttributes struct {
	// Sets whether the input image is free of personally identifiable information.
	ContentClassifiers []ContentClassifier
}

Allows you to set attributes of the image. Currently, you can declare an image as free of personally identifiable information.

type HumanLoopQuotaExceededException

type HumanLoopQuotaExceededException struct {
	Message *string

	ResourceType *string
	QuotaCode    *string
	Logref       *string
	Code         *string
	ServiceCode  *string
}

The number of in-progress human reviews you have has exceeded the number allowed.

func (*HumanLoopQuotaExceededException) Error

func (*HumanLoopQuotaExceededException) ErrorCode

func (e *HumanLoopQuotaExceededException) ErrorCode() string

func (*HumanLoopQuotaExceededException) ErrorFault

func (*HumanLoopQuotaExceededException) ErrorMessage

func (e *HumanLoopQuotaExceededException) ErrorMessage() string

func (*HumanLoopQuotaExceededException) GetCode

func (*HumanLoopQuotaExceededException) GetLogref

func (e *HumanLoopQuotaExceededException) GetLogref() string

func (*HumanLoopQuotaExceededException) GetMessage

func (e *HumanLoopQuotaExceededException) GetMessage() string

func (*HumanLoopQuotaExceededException) GetQuotaCode

func (e *HumanLoopQuotaExceededException) GetQuotaCode() string

func (*HumanLoopQuotaExceededException) GetResourceType

func (e *HumanLoopQuotaExceededException) GetResourceType() string

func (*HumanLoopQuotaExceededException) GetServiceCode

func (e *HumanLoopQuotaExceededException) GetServiceCode() string

func (*HumanLoopQuotaExceededException) HasCode

func (*HumanLoopQuotaExceededException) HasLogref

func (e *HumanLoopQuotaExceededException) HasLogref() bool

func (*HumanLoopQuotaExceededException) HasMessage

func (e *HumanLoopQuotaExceededException) HasMessage() bool

func (*HumanLoopQuotaExceededException) HasQuotaCode

func (e *HumanLoopQuotaExceededException) HasQuotaCode() bool

func (*HumanLoopQuotaExceededException) HasResourceType

func (e *HumanLoopQuotaExceededException) HasResourceType() bool

func (*HumanLoopQuotaExceededException) HasServiceCode

func (e *HumanLoopQuotaExceededException) HasServiceCode() bool

type IdempotentParameterMismatchException

type IdempotentParameterMismatchException struct {
	Message *string

	Logref *string
	Code   *string
}

A ClientRequestToken input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.

func (*IdempotentParameterMismatchException) Error

func (*IdempotentParameterMismatchException) ErrorCode

func (*IdempotentParameterMismatchException) ErrorFault

func (*IdempotentParameterMismatchException) ErrorMessage

func (e *IdempotentParameterMismatchException) ErrorMessage() string

func (*IdempotentParameterMismatchException) GetCode

func (*IdempotentParameterMismatchException) GetLogref

func (*IdempotentParameterMismatchException) GetMessage

func (*IdempotentParameterMismatchException) HasCode

func (*IdempotentParameterMismatchException) HasLogref

func (*IdempotentParameterMismatchException) HasMessage

type Image

type Image struct {
	// Blob of image bytes up to 5 MBs.
	Bytes []byte
	// Identifies an S3 object as the image source.
	S3Object *S3Object
}

Provides the input image either as bytes or an S3 object. You pass image bytes to an Amazon Rekognition API operation by using the Bytes property. For example, you would use the Bytes property to pass an image loaded from a local file system. Image bytes passed by using the Bytes property must be base64-encoded. Your code may not need to encode image bytes if you are using an AWS SDK to call Amazon Rekognition API operations. <p>For more information, see Analyzing an Image Loaded from a Local File System in the Amazon Rekognition Developer Guide.</p> <p> You pass images stored in an S3 bucket to an Amazon Rekognition API operation by using the <code>S3Object</code> property. Images stored in an S3 bucket do not need to be base64-encoded.</p> <p>The region for the S3 bucket containing the S3 object must match the region you use for Amazon Rekognition operations.</p> <p>If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes using the Bytes property is not supported. You must first upload the image to an Amazon S3 bucket and then call the operation using the S3Object property.</p> <p>For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object. For more information, see Resource Based Policies in the Amazon Rekognition Developer Guide. </p>

type ImageQuality

type ImageQuality struct {
	// Value representing sharpness of the face. The service returns a value between 0
	// and 100 (inclusive). A higher value indicates a sharper face image.
	Sharpness *float32
	// Value representing brightness of the face. The service returns a value between 0
	// and 100 (inclusive). A higher value indicates a brighter face image.
	Brightness *float32
}

Identifies face image brightness and sharpness.

type ImageTooLargeException

type ImageTooLargeException struct {
	Message *string

	Logref *string
	Code   *string
}

The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide.

func (*ImageTooLargeException) Error

func (e *ImageTooLargeException) Error() string

func (*ImageTooLargeException) ErrorCode

func (e *ImageTooLargeException) ErrorCode() string

func (*ImageTooLargeException) ErrorFault

func (e *ImageTooLargeException) ErrorFault() smithy.ErrorFault

func (*ImageTooLargeException) ErrorMessage

func (e *ImageTooLargeException) ErrorMessage() string

func (*ImageTooLargeException) GetCode

func (e *ImageTooLargeException) GetCode() string

func (*ImageTooLargeException) GetLogref

func (e *ImageTooLargeException) GetLogref() string

func (*ImageTooLargeException) GetMessage

func (e *ImageTooLargeException) GetMessage() string

func (*ImageTooLargeException) HasCode

func (e *ImageTooLargeException) HasCode() bool

func (*ImageTooLargeException) HasLogref

func (e *ImageTooLargeException) HasLogref() bool

func (*ImageTooLargeException) HasMessage

func (e *ImageTooLargeException) HasMessage() bool

type Instance

type Instance struct {
	// The position of the label instance on the image.
	BoundingBox *BoundingBox
	// The confidence that Amazon Rekognition has in the accuracy of the bounding box.
	Confidence *float32
}

An instance of a label returned by Amazon Rekognition Image (DetectLabels ()) or by Amazon Rekognition Video (GetLabelDetection ()).

type InternalServerError

type InternalServerError struct {
	Message *string

	Logref *string
	Code   *string
}

Amazon Rekognition experienced a service issue. Try your call again.

func (*InternalServerError) Error

func (e *InternalServerError) Error() string

func (*InternalServerError) ErrorCode

func (e *InternalServerError) ErrorCode() string

func (*InternalServerError) ErrorFault

func (e *InternalServerError) ErrorFault() smithy.ErrorFault

func (*InternalServerError) ErrorMessage

func (e *InternalServerError) ErrorMessage() string

func (*InternalServerError) GetCode

func (e *InternalServerError) GetCode() string

func (*InternalServerError) GetLogref

func (e *InternalServerError) GetLogref() string

func (*InternalServerError) GetMessage

func (e *InternalServerError) GetMessage() string

func (*InternalServerError) HasCode

func (e *InternalServerError) HasCode() bool

func (*InternalServerError) HasLogref

func (e *InternalServerError) HasLogref() bool

func (*InternalServerError) HasMessage

func (e *InternalServerError) HasMessage() bool

type InvalidImageFormatException

type InvalidImageFormatException struct {
	Message *string

	Code   *string
	Logref *string
}

The provided image format is not supported.

func (*InvalidImageFormatException) Error

func (*InvalidImageFormatException) ErrorCode

func (e *InvalidImageFormatException) ErrorCode() string

func (*InvalidImageFormatException) ErrorFault

func (*InvalidImageFormatException) ErrorMessage

func (e *InvalidImageFormatException) ErrorMessage() string

func (*InvalidImageFormatException) GetCode

func (e *InvalidImageFormatException) GetCode() string

func (*InvalidImageFormatException) GetLogref

func (e *InvalidImageFormatException) GetLogref() string

func (*InvalidImageFormatException) GetMessage

func (e *InvalidImageFormatException) GetMessage() string

func (*InvalidImageFormatException) HasCode

func (e *InvalidImageFormatException) HasCode() bool

func (*InvalidImageFormatException) HasLogref

func (e *InvalidImageFormatException) HasLogref() bool

func (*InvalidImageFormatException) HasMessage

func (e *InvalidImageFormatException) HasMessage() bool

type InvalidPaginationTokenException

type InvalidPaginationTokenException struct {
	Message *string

	Code   *string
	Logref *string
}

Pagination token in the request is not valid.

func (*InvalidPaginationTokenException) Error

func (*InvalidPaginationTokenException) ErrorCode

func (e *InvalidPaginationTokenException) ErrorCode() string

func (*InvalidPaginationTokenException) ErrorFault

func (*InvalidPaginationTokenException) ErrorMessage

func (e *InvalidPaginationTokenException) ErrorMessage() string

func (*InvalidPaginationTokenException) GetCode

func (*InvalidPaginationTokenException) GetLogref

func (e *InvalidPaginationTokenException) GetLogref() string

func (*InvalidPaginationTokenException) GetMessage

func (e *InvalidPaginationTokenException) GetMessage() string

func (*InvalidPaginationTokenException) HasCode

func (*InvalidPaginationTokenException) HasLogref

func (e *InvalidPaginationTokenException) HasLogref() bool

func (*InvalidPaginationTokenException) HasMessage

func (e *InvalidPaginationTokenException) HasMessage() bool

type InvalidParameterException

type InvalidParameterException struct {
	Message *string

	Code   *string
	Logref *string
}

Input parameter violated a constraint. Validate your parameter before calling the API operation again.

func (*InvalidParameterException) Error

func (e *InvalidParameterException) Error() string

func (*InvalidParameterException) ErrorCode

func (e *InvalidParameterException) ErrorCode() string

func (*InvalidParameterException) ErrorFault

func (*InvalidParameterException) ErrorMessage

func (e *InvalidParameterException) ErrorMessage() string

func (*InvalidParameterException) GetCode

func (e *InvalidParameterException) GetCode() string

func (*InvalidParameterException) GetLogref

func (e *InvalidParameterException) GetLogref() string

func (*InvalidParameterException) GetMessage

func (e *InvalidParameterException) GetMessage() string

func (*InvalidParameterException) HasCode

func (e *InvalidParameterException) HasCode() bool

func (*InvalidParameterException) HasLogref

func (e *InvalidParameterException) HasLogref() bool

func (*InvalidParameterException) HasMessage

func (e *InvalidParameterException) HasMessage() bool

type InvalidS3ObjectException

type InvalidS3ObjectException struct {
	Message *string

	Code   *string
	Logref *string
}

Amazon Rekognition is unable to access the S3 object specified in the request.

func (*InvalidS3ObjectException) Error

func (e *InvalidS3ObjectException) Error() string

func (*InvalidS3ObjectException) ErrorCode

func (e *InvalidS3ObjectException) ErrorCode() string

func (*InvalidS3ObjectException) ErrorFault

func (e *InvalidS3ObjectException) ErrorFault() smithy.ErrorFault

func (*InvalidS3ObjectException) ErrorMessage

func (e *InvalidS3ObjectException) ErrorMessage() string

func (*InvalidS3ObjectException) GetCode

func (e *InvalidS3ObjectException) GetCode() string

func (*InvalidS3ObjectException) GetLogref

func (e *InvalidS3ObjectException) GetLogref() string

func (*InvalidS3ObjectException) GetMessage

func (e *InvalidS3ObjectException) GetMessage() string

func (*InvalidS3ObjectException) HasCode

func (e *InvalidS3ObjectException) HasCode() bool

func (*InvalidS3ObjectException) HasLogref

func (e *InvalidS3ObjectException) HasLogref() bool

func (*InvalidS3ObjectException) HasMessage

func (e *InvalidS3ObjectException) HasMessage() bool

type KinesisDataStream

type KinesisDataStream struct {
	// ARN of the output Amazon Kinesis Data Streams stream.
	Arn *string
}

The Kinesis data stream Amazon Rekognition to which the analysis results of a Amazon Rekognition stream processor are streamed. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.

type KinesisVideoStream

type KinesisVideoStream struct {
	// ARN of the Kinesis video stream stream that streams the source video.
	Arn *string
}

Kinesis video stream stream that provides the source streaming video for a Amazon Rekognition Video stream processor. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.

type Label

type Label struct {
	// The name (label) of the object or scene.
	Name *string
	// If Label represents an object, Instances contains the bounding boxes for each
	// instance of the detected object. Bounding boxes are returned for common object
	// labels such as people, cars, furniture, apparel or pets.
	Instances []*Instance
	// The parent labels for a label. The response includes all ancestor labels.
	Parents []*Parent
	// Level of confidence.
	Confidence *float32
}

Structure containing details about the detected label, including the name, detected instances, parent labels, and level of confidence.

type LabelDetection

type LabelDetection struct {
	// Details about the detected label.
	Label *Label
	// Time, in milliseconds from the start of the video, that the label was detected.
	Timestamp *int64
}

Information about a label detected in a video analysis request and the time the label was detected in the video.

type LabelDetectionSortBy

type LabelDetectionSortBy string
const (
	LabelDetectionSortByName      LabelDetectionSortBy = "NAME"
	LabelDetectionSortByTimestamp LabelDetectionSortBy = "TIMESTAMP"
)

Enum values for LabelDetectionSortBy

type Landmark

type Landmark struct {
	// Type of landmark.
	Type LandmarkType
	// The y-coordinate from the top left of the landmark expressed as the ratio of the
	// height of the image. For example, if the image is 700 x 200 and the y-coordinate
	// of the landmark is at 100 pixels, this value is 0.5.
	Y *float32
	// The x-coordinate from the top left of the landmark expressed as the ratio of the
	// width of the image. For example, if the image is 700 x 200 and the x-coordinate
	// of the landmark is at 350 pixels, this value is 0.5.
	X *float32
}

Indicates the location of the landmark on the face.

type LandmarkType

type LandmarkType string
const (
	LandmarkTypeEyeleft           LandmarkType = "eyeLeft"
	LandmarkTypeEyeright          LandmarkType = "eyeRight"
	LandmarkTypeNose              LandmarkType = "nose"
	LandmarkTypeMouthleft         LandmarkType = "mouthLeft"
	LandmarkTypeMouthright        LandmarkType = "mouthRight"
	LandmarkTypeLefteyebrowleft   LandmarkType = "leftEyeBrowLeft"
	LandmarkTypeLefteyebrowright  LandmarkType = "leftEyeBrowRight"
	LandmarkTypeLefteyebrowup     LandmarkType = "leftEyeBrowUp"
	LandmarkTypeRighteyebrowleft  LandmarkType = "rightEyeBrowLeft"
	LandmarkTypeRighteyebrowright LandmarkType = "rightEyeBrowRight"
	LandmarkTypeRighteyebrowup    LandmarkType = "rightEyeBrowUp"
	LandmarkTypeLefteyeleft       LandmarkType = "leftEyeLeft"
	LandmarkTypeLefteyeright      LandmarkType = "leftEyeRight"
	LandmarkTypeLefteyeup         LandmarkType = "leftEyeUp"
	LandmarkTypeLefteyedown       LandmarkType = "leftEyeDown"
	LandmarkTypeRighteyeleft      LandmarkType = "rightEyeLeft"
	LandmarkTypeRighteyeright     LandmarkType = "rightEyeRight"
	LandmarkTypeRighteyeup        LandmarkType = "rightEyeUp"
	LandmarkTypeRighteyedown      LandmarkType = "rightEyeDown"
	LandmarkTypeNoseleft          LandmarkType = "noseLeft"
	LandmarkTypeNoseright         LandmarkType = "noseRight"
	LandmarkTypeMouthup           LandmarkType = "mouthUp"
	LandmarkTypeMouthdown         LandmarkType = "mouthDown"
	LandmarkTypeLeftpupil         LandmarkType = "leftPupil"
	LandmarkTypeRightpupil        LandmarkType = "rightPupil"
	LandmarkTypeUpperjawlineleft  LandmarkType = "upperJawlineLeft"
	LandmarkTypeMidjawlineleft    LandmarkType = "midJawlineLeft"
	LandmarkTypeChinbottom        LandmarkType = "chinBottom"
	LandmarkTypeMidjawlineright   LandmarkType = "midJawlineRight"
	LandmarkTypeUpperjawlineright LandmarkType = "upperJawlineRight"
)

Enum values for LandmarkType

type LimitExceededException

type LimitExceededException struct {
	Message *string

	Logref *string
	Code   *string
}

An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (StartLabelDetection, for example) will raise a LimitExceededException exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit.

func (*LimitExceededException) Error

func (e *LimitExceededException) Error() string

func (*LimitExceededException) ErrorCode

func (e *LimitExceededException) ErrorCode() string

func (*LimitExceededException) ErrorFault

func (e *LimitExceededException) ErrorFault() smithy.ErrorFault

func (*LimitExceededException) ErrorMessage

func (e *LimitExceededException) ErrorMessage() string

func (*LimitExceededException) GetCode

func (e *LimitExceededException) GetCode() string

func (*LimitExceededException) GetLogref

func (e *LimitExceededException) GetLogref() string

func (*LimitExceededException) GetMessage

func (e *LimitExceededException) GetMessage() string

func (*LimitExceededException) HasCode

func (e *LimitExceededException) HasCode() bool

func (*LimitExceededException) HasLogref

func (e *LimitExceededException) HasLogref() bool

func (*LimitExceededException) HasMessage

func (e *LimitExceededException) HasMessage() bool

type ModerationLabel

type ModerationLabel struct {
	// The name for the parent label. Labels at the top level of the hierarchy have the
	// parent label "".
	ParentName *string
	// The label name for the type of unsafe content detected in the image.
	Name *string
	// Specifies the confidence that Amazon Rekognition has that the label has been
	// correctly identified. If you don't specify the MinConfidence parameter in the
	// call to DetectModerationLabels, the operation returns labels with a confidence
	// value greater than or equal to 50 percent.
	Confidence *float32
}

Provides information about a single type of unsafe content found in an image or video. Each type of moderated content has a label within a hierarchical taxonomy. For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.

type MouthOpen

type MouthOpen struct {
	// Boolean value that indicates whether the mouth on the face is open or not.
	Value *bool
	// Level of confidence in the determination.
	Confidence *float32
}

Indicates whether or not the mouth on the face is open, and the confidence level in the determination.

type Mustache

type Mustache struct {
	// Boolean value that indicates whether the face has mustache or not.
	Value *bool
	// Level of confidence in the determination.
	Confidence *float32
}

Indicates whether or not the face has a mustache, and the confidence level in the determination.

type NotificationChannel

type NotificationChannel struct {
	// The ARN of an IAM role that gives Amazon Rekognition publishing permissions to
	// the Amazon SNS topic.
	RoleArn *string
	// The Amazon SNS topic to which Amazon Rekognition to posts the completion status.
	SNSTopicArn *string
}

The Amazon Simple Notification Service topic to which Amazon Rekognition publishes the completion status of a video analysis operation. For more information, see api-video ().

type OrientationCorrection

type OrientationCorrection string
const (
	OrientationCorrectionRotate_0   OrientationCorrection = "ROTATE_0"
	OrientationCorrectionRotate_90  OrientationCorrection = "ROTATE_90"
	OrientationCorrectionRotate_180 OrientationCorrection = "ROTATE_180"
	OrientationCorrectionRotate_270 OrientationCorrection = "ROTATE_270"
)

Enum values for OrientationCorrection

type OutputConfig

type OutputConfig struct {
	// The S3 bucket where training output is placed.
	S3Bucket *string
	// The prefix applied to the training output files.
	S3KeyPrefix *string
}

The S3 bucket and folder location where training output is placed.

type Parent

type Parent struct {
	// The name of the parent label.
	Name *string
}

A parent label for a label. A label can have 0, 1, or more parents.

type PersonDetail

type PersonDetail struct {
	// Identifier for the person detected person within a video. Use to keep track of
	// the person throughout the video. The identifier is not stored by Amazon
	// Rekognition.
	Index *int64
	// Face details for the detected person.
	Face *FaceDetail
	// Bounding box around the detected person.
	BoundingBox *BoundingBox
}

Details about a person detected in a video analysis request.

type PersonDetection

type PersonDetection struct {
	// The time, in milliseconds from the start of the video, that the person's path
	// was tracked.
	Timestamp *int64
	// Details about a person whose path was tracked in a video.
	Person *PersonDetail
}

Details and path tracking information for a single time a person's path is tracked in a video. Amazon Rekognition operations that track people's paths return an array of PersonDetection objects with elements for each time a person's path is tracked in a video. <p>For more information, see GetPersonTracking in the Amazon Rekognition Developer Guide. </p>

type PersonMatch

type PersonMatch struct {
	// Information about the faces in the input collection that match the face of a
	// person in the video.
	FaceMatches []*FaceMatch
	// The time, in milliseconds from the beginning of the video, that the person was
	// matched in the video.
	Timestamp *int64
	// Information about the matched person.
	Person *PersonDetail
}

Information about a person whose face matches a face(s) in an Amazon Rekognition collection. Includes information about the faces in the Amazon Rekognition collection (FaceMatch ()), information about the person (PersonDetail ()), and the time stamp for when the person was detected in a video. An array of PersonMatch objects is returned by GetFaceSearch ().

type PersonTrackingSortBy

type PersonTrackingSortBy string
const (
	PersonTrackingSortByIndex     PersonTrackingSortBy = "INDEX"
	PersonTrackingSortByTimestamp PersonTrackingSortBy = "TIMESTAMP"
)

Enum values for PersonTrackingSortBy

type Point

type Point struct {
	// The value of the X coordinate for a point on a Polygon.
	X *float32
	// The value of the Y coordinate for a point on a Polygon.
	Y *float32
}

The X and Y coordinates of a point on an image. The X and Y values returned are ratios of the overall image size. For example, if the input image is 700x200 and the operation returns X=0.5 and Y=0.25, then the point is at the (350,50) pixel coordinate on the image. <p>An array of <code>Point</code> objects, <code>Polygon</code>, is returned by <a>DetectText</a> and by <a>DetectCustomLabels</a>. <code>Polygon</code> represents a fine-grained polygon around a detected item. For more information, see Geometry in the Amazon Rekognition Developer Guide. </p>

type Pose

type Pose struct {
	// Value representing the face rotation on the yaw axis.
	Yaw *float32
	// Value representing the face rotation on the roll axis.
	Roll *float32
	// Value representing the face rotation on the pitch axis.
	Pitch *float32
}

Indicates the pose of the face as determined by its pitch, roll, and yaw.

type ProjectDescription

type ProjectDescription struct {
	// The current status of the project.
	Status ProjectStatus
	// The Amazon Resource Name (ARN) of the project.
	ProjectArn *string
	// The Unix timestamp for the date and time that the project was created.
	CreationTimestamp *time.Time
}

A description of a Amazon Rekognition Custom Labels project.

type ProjectStatus

type ProjectStatus string
const (
	ProjectStatusCreating ProjectStatus = "CREATING"
	ProjectStatusCreated  ProjectStatus = "CREATED"
	ProjectStatusDeleting ProjectStatus = "DELETING"
)

Enum values for ProjectStatus

type ProjectVersionDescription

type ProjectVersionDescription struct {
	// The location where training results are saved.
	OutputConfig *OutputConfig
	// The current status of the model version.
	Status ProjectVersionStatus
	// The minimum number of inference units used by the model. For more information,
	// see StartProjectVersion ().
	MinInferenceUnits *int32
	// The Unix date and time that training of the model ended.
	TrainingEndTimestamp *time.Time
	// The manifest file that represents the testing results.
	TestingDataResult *TestingDataResult
	// The manifest file that represents the training results.
	TrainingDataResult *TrainingDataResult
	// The Amazon Resource Name (ARN) of the model version.
	ProjectVersionArn *string
	// The training results. EvaluationResult is only returned if training is
	// successful.
	EvaluationResult *EvaluationResult
	// The duration, in seconds, that the model version has been billed for training.
	// This value is only returned if the model version has been successfully trained.
	BillableTrainingTimeInSeconds *int64
	// A descriptive message for an error or warning that occurred.
	StatusMessage *string
	// The Unix datetime for the date and time that training started.
	CreationTimestamp *time.Time
}

The description of a version of a model.

type ProjectVersionStatus

type ProjectVersionStatus string
const (
	ProjectVersionStatusTraining_in_progress ProjectVersionStatus = "TRAINING_IN_PROGRESS"
	ProjectVersionStatusTraining_completed   ProjectVersionStatus = "TRAINING_COMPLETED"
	ProjectVersionStatusTraining_failed      ProjectVersionStatus = "TRAINING_FAILED"
	ProjectVersionStatusStarting             ProjectVersionStatus = "STARTING"
	ProjectVersionStatusRunning              ProjectVersionStatus = "RUNNING"
	ProjectVersionStatusFailed               ProjectVersionStatus = "FAILED"
	ProjectVersionStatusStopping             ProjectVersionStatus = "STOPPING"
	ProjectVersionStatusStopped              ProjectVersionStatus = "STOPPED"
	ProjectVersionStatusDeleting             ProjectVersionStatus = "DELETING"
)

Enum values for ProjectVersionStatus

type ProvisionedThroughputExceededException

type ProvisionedThroughputExceededException struct {
	Message *string

	Code   *string
	Logref *string
}

The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.

func (*ProvisionedThroughputExceededException) Error

func (*ProvisionedThroughputExceededException) ErrorCode

func (*ProvisionedThroughputExceededException) ErrorFault

func (*ProvisionedThroughputExceededException) ErrorMessage

func (*ProvisionedThroughputExceededException) GetCode

func (*ProvisionedThroughputExceededException) GetLogref

func (*ProvisionedThroughputExceededException) GetMessage

func (*ProvisionedThroughputExceededException) HasCode

func (*ProvisionedThroughputExceededException) HasLogref

func (*ProvisionedThroughputExceededException) HasMessage

type QualityFilter

type QualityFilter string
const (
	QualityFilterNone   QualityFilter = "NONE"
	QualityFilterAuto   QualityFilter = "AUTO"
	QualityFilterLow    QualityFilter = "LOW"
	QualityFilterMedium QualityFilter = "MEDIUM"
	QualityFilterHigh   QualityFilter = "HIGH"
)

Enum values for QualityFilter

type Reason

type Reason string
const (
	ReasonExceeds_max_faces  Reason = "EXCEEDS_MAX_FACES"
	ReasonExtreme_pose       Reason = "EXTREME_POSE"
	ReasonLow_brightness     Reason = "LOW_BRIGHTNESS"
	ReasonLow_sharpness      Reason = "LOW_SHARPNESS"
	ReasonLow_confidence     Reason = "LOW_CONFIDENCE"
	ReasonSmall_bounding_box Reason = "SMALL_BOUNDING_BOX"
	ReasonLow_face_quality   Reason = "LOW_FACE_QUALITY"
)

Enum values for Reason

type RegionOfInterest

type RegionOfInterest struct {
	// The box representing a region of interest on screen.
	BoundingBox *BoundingBox
}

Specifies a location within the frame that Rekognition checks for text. Uses a BoundingBox object to set a region of the screen. A word is included in the region if the word is more than half in that region. If there is more than one region, the word will be compared with all regions of the screen. Any word more than half in a region is kept in the results.

type ResourceAlreadyExistsException

type ResourceAlreadyExistsException struct {
	Message *string

	Code   *string
	Logref *string
}

A collection with the specified ID already exists.

func (*ResourceAlreadyExistsException) Error

func (*ResourceAlreadyExistsException) ErrorCode

func (e *ResourceAlreadyExistsException) ErrorCode() string

func (*ResourceAlreadyExistsException) ErrorFault

func (*ResourceAlreadyExistsException) ErrorMessage

func (e *ResourceAlreadyExistsException) ErrorMessage() string

func (*ResourceAlreadyExistsException) GetCode

func (*ResourceAlreadyExistsException) GetLogref

func (e *ResourceAlreadyExistsException) GetLogref() string

func (*ResourceAlreadyExistsException) GetMessage

func (e *ResourceAlreadyExistsException) GetMessage() string

func (*ResourceAlreadyExistsException) HasCode

func (e *ResourceAlreadyExistsException) HasCode() bool

func (*ResourceAlreadyExistsException) HasLogref

func (e *ResourceAlreadyExistsException) HasLogref() bool

func (*ResourceAlreadyExistsException) HasMessage

func (e *ResourceAlreadyExistsException) HasMessage() bool

type ResourceInUseException

type ResourceInUseException struct {
	Message *string

	Code   *string
	Logref *string
}

The specified resource is already being used.

func (*ResourceInUseException) Error

func (e *ResourceInUseException) Error() string

func (*ResourceInUseException) ErrorCode

func (e *ResourceInUseException) ErrorCode() string

func (*ResourceInUseException) ErrorFault

func (e *ResourceInUseException) ErrorFault() smithy.ErrorFault

func (*ResourceInUseException) ErrorMessage

func (e *ResourceInUseException) ErrorMessage() string

func (*ResourceInUseException) GetCode

func (e *ResourceInUseException) GetCode() string

func (*ResourceInUseException) GetLogref

func (e *ResourceInUseException) GetLogref() string

func (*ResourceInUseException) GetMessage

func (e *ResourceInUseException) GetMessage() string

func (*ResourceInUseException) HasCode

func (e *ResourceInUseException) HasCode() bool

func (*ResourceInUseException) HasLogref

func (e *ResourceInUseException) HasLogref() bool

func (*ResourceInUseException) HasMessage

func (e *ResourceInUseException) HasMessage() bool

type ResourceNotFoundException

type ResourceNotFoundException struct {
	Message *string

	Logref *string
	Code   *string
}

The collection specified in the request cannot be found.

func (*ResourceNotFoundException) Error

func (e *ResourceNotFoundException) Error() string

func (*ResourceNotFoundException) ErrorCode

func (e *ResourceNotFoundException) ErrorCode() string

func (*ResourceNotFoundException) ErrorFault

func (*ResourceNotFoundException) ErrorMessage

func (e *ResourceNotFoundException) ErrorMessage() string

func (*ResourceNotFoundException) GetCode

func (e *ResourceNotFoundException) GetCode() string

func (*ResourceNotFoundException) GetLogref

func (e *ResourceNotFoundException) GetLogref() string

func (*ResourceNotFoundException) GetMessage

func (e *ResourceNotFoundException) GetMessage() string

func (*ResourceNotFoundException) HasCode

func (e *ResourceNotFoundException) HasCode() bool

func (*ResourceNotFoundException) HasLogref

func (e *ResourceNotFoundException) HasLogref() bool

func (*ResourceNotFoundException) HasMessage

func (e *ResourceNotFoundException) HasMessage() bool

type ResourceNotReadyException

type ResourceNotReadyException struct {
	Message *string

	Logref *string
	Code   *string
}

The requested resource isn't ready. For example, this exception occurs when you call DetectCustomLabels with a model version that isn't deployed.

func (*ResourceNotReadyException) Error

func (e *ResourceNotReadyException) Error() string

func (*ResourceNotReadyException) ErrorCode

func (e *ResourceNotReadyException) ErrorCode() string

func (*ResourceNotReadyException) ErrorFault

func (*ResourceNotReadyException) ErrorMessage

func (e *ResourceNotReadyException) ErrorMessage() string

func (*ResourceNotReadyException) GetCode

func (e *ResourceNotReadyException) GetCode() string

func (*ResourceNotReadyException) GetLogref

func (e *ResourceNotReadyException) GetLogref() string

func (*ResourceNotReadyException) GetMessage

func (e *ResourceNotReadyException) GetMessage() string

func (*ResourceNotReadyException) HasCode

func (e *ResourceNotReadyException) HasCode() bool

func (*ResourceNotReadyException) HasLogref

func (e *ResourceNotReadyException) HasLogref() bool

func (*ResourceNotReadyException) HasMessage

func (e *ResourceNotReadyException) HasMessage() bool

type S3Object

type S3Object struct {
	// Name of the S3 bucket.
	Bucket *string
	// If the bucket is versioning enabled, you can specify the object version.
	Version *string
	// S3 object key name.
	Name *string
}

Provides the S3 bucket name and object name. The region for the S3 bucket containing the S3 object must match the region you use for Amazon Rekognition operations. <p>For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object. For more information, see Resource-Based Policies in the Amazon Rekognition Developer Guide. </p>

type SegmentDetection

type SegmentDetection struct {
	// The frame-accurate SMPTE timecode, from the start of a video, for the start of a
	// detected segment. StartTimecode is in HH:MM:SS:fr format (and ;fr for drop
	// frame-rates).
	StartTimecodeSMPTE *string
	// The duration of the timecode for the detected segment in SMPTE format.
	DurationSMPTE *string
	// If the segment is a shot detection, contains information about the shot
	// detection.
	ShotSegment *ShotSegment
	// The frame-accurate SMPTE timecode, from the start of a video, for the end of a
	// detected segment. EndTimecode is in HH:MM:SS:fr format (and ;fr for drop
	// frame-rates).
	EndTimecodeSMPTE *string
	// The end time of the detected segment, in milliseconds, from the start of the
	// video.
	EndTimestampMillis *int64
	// The start time of the detected segment in milliseconds from the start of the
	// video.
	StartTimestampMillis *int64
	// The type of the segment. Valid values are TECHNICAL_CUE and SHOT.
	Type SegmentType
	// If the segment is a technical cue, contains information about the technical cue.
	TechnicalCueSegment *TechnicalCueSegment
	// The duration of the detected segment in milliseconds.
	DurationMillis *int64
}

A technical cue or shot detection segment detected in a video. An array of SegmentDetection objects containing all segments detected in a stored video is returned by GetSegmentDetection ().

type SegmentType

type SegmentType string
const (
	SegmentTypeTechnical_cue SegmentType = "TECHNICAL_CUE"
	SegmentTypeShot          SegmentType = "SHOT"
)

Enum values for SegmentType

type SegmentTypeInfo

type SegmentTypeInfo struct {
	// The type of a segment (technical cue or shot detection).
	Type SegmentType
	// The version of the model used to detect segments.
	ModelVersion *string
}

Information about the type of a segment requested in a call to StartSegmentDetection (). An array of SegmentTypeInfo objects is returned by the response from GetSegmentDetection ().

type ShotSegment

type ShotSegment struct {
	// The confidence that Amazon Rekognition Video has in the accuracy of the detected
	// segment.
	Confidence *float32
	// An Identifier for a shot detection segment detected in a video
	Index *int64
}

Information about a shot detection segment detected in a video. For more information, see SegmentDetection ().

type Smile

type Smile struct {
	// Boolean value that indicates whether the face is smiling or not.
	Value *bool
	// Level of confidence in the determination.
	Confidence *float32
}

Indicates whether or not the face is smiling, and the confidence level in the determination.

type StartSegmentDetectionFilters

type StartSegmentDetectionFilters struct {
	// Filters that are specific to shot detections.
	ShotFilter *StartShotDetectionFilter
	// Filters that are specific to technical cues.
	TechnicalCueFilter *StartTechnicalCueDetectionFilter
}

Filters applied to the technical cue or shot detection segments. For more information, see StartSegmentDetection ().

type StartShotDetectionFilter

type StartShotDetectionFilter struct {
	// Specifies the minimum confidence that Amazon Rekognition Video must have in
	// order to return a detected segment. Confidence represents how certain Amazon
	// Rekognition is that a segment is correctly identified. 0 is the lowest
	// confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't
	// return any segments with a confidence level lower than this specified value. If
	// you don't specify MinSegmentConfidence, the GetSegmentDetection returns segments
	// with confidence values greater than or equal to 50 percent.
	MinSegmentConfidence *float32
}

Filters for the shot detection segments returned by GetSegmentDetection. For more information, see StartSegmentDetectionFilters ().

type StartTechnicalCueDetectionFilter

type StartTechnicalCueDetectionFilter struct {
	// Specifies the minimum confidence that Amazon Rekognition Video must have in
	// order to return a detected segment. Confidence represents how certain Amazon
	// Rekognition is that a segment is correctly identified. 0 is the lowest
	// confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't
	// return any segments with a confidence level lower than this specified value. If
	// you don't specify MinSegmentConfidence, GetSegmentDetection returns segments
	// with confidence values greater than or equal to 50 percent.
	MinSegmentConfidence *float32
}

Filters for the technical segments returned by GetSegmentDetection (). For more information, see StartSegmentDetectionFilters ().

type StartTextDetectionFilters

type StartTextDetectionFilters struct {
	// Filter focusing on a certain area of the frame. Uses a BoundingBox object to set
	// the region of the screen.
	RegionsOfInterest []*RegionOfInterest
	// Filters focusing on qualities of the text, such as confidence or size.
	WordFilter *DetectionFilter
}

Set of optional parameters that let you set the criteria text must meet to be included in your response. WordFilter looks at a word's height, width and minimum confidence. RegionOfInterest lets you set a specific region of the screen to look for text in.

type StreamProcessor

type StreamProcessor struct {
	// Name of the Amazon Rekognition stream processor.
	Name *string
	// Current status of the Amazon Rekognition stream processor.
	Status StreamProcessorStatus
}

An object that recognizes faces in a streaming video. An Amazon Rekognition stream processor is created by a call to CreateStreamProcessor (). The request parameters for CreateStreamProcessor describe the Kinesis video stream source for the streaming video, face recognition parameters, and where to stream the analysis resullts. </p>

type StreamProcessorInput

type StreamProcessorInput struct {
	// The Kinesis video stream input stream for the source streaming video.
	KinesisVideoStream *KinesisVideoStream
}

Information about the source streaming video.

type StreamProcessorOutput

type StreamProcessorOutput struct {
	// The Amazon Kinesis Data Streams stream to which the Amazon Rekognition stream
	// processor streams the analysis results.
	KinesisDataStream *KinesisDataStream
}

Information about the Amazon Kinesis Data Streams stream to which a Amazon Rekognition Video stream processor streams the results of a video analysis. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.

type StreamProcessorSettings

type StreamProcessorSettings struct {
	// Face search settings to use on a streaming video.
	FaceSearch *FaceSearchSettings
}

Input parameters used to recognize faces in a streaming video analyzed by a Amazon Rekognition stream processor.

type StreamProcessorStatus

type StreamProcessorStatus string
const (
	StreamProcessorStatusStopped  StreamProcessorStatus = "STOPPED"
	StreamProcessorStatusStarting StreamProcessorStatus = "STARTING"
	StreamProcessorStatusRunning  StreamProcessorStatus = "RUNNING"
	StreamProcessorStatusFailed   StreamProcessorStatus = "FAILED"
	StreamProcessorStatusStopping StreamProcessorStatus = "STOPPING"
)

Enum values for StreamProcessorStatus

type Summary

type Summary struct {
	// Provides the S3 bucket name and object name. The region for the S3 bucket
	// containing the S3 object must match the region you use for Amazon Rekognition
	// operations.  <p>For Amazon Rekognition to process an S3 object, the user must
	// have permission to access the S3 object. For more information, see
	// Resource-Based Policies in the Amazon Rekognition Developer Guide. </p>
	S3Object *S3Object
}

The S3 bucket that contains the training summary. The training summary includes aggregated evaluation metrics for the entire testing dataset and metrics for each individual label. You get the training summary S3 bucket location by calling DescribeProjectVersions ().

type Sunglasses

type Sunglasses struct {
	// Level of confidence in the determination.
	Confidence *float32
	// Boolean value that indicates whether the face is wearing sunglasses or not.
	Value *bool
}

Indicates whether or not the face is wearing sunglasses, and the confidence level in the determination.

type TechnicalCueSegment

type TechnicalCueSegment struct {
	// The type of the technical cue.
	Type TechnicalCueType
	// The confidence that Amazon Rekognition Video has in the accuracy of the detected
	// segment.
	Confidence *float32
}

Information about a technical cue segment. For more information, see SegmentDetection ().

type TechnicalCueType

type TechnicalCueType string
const (
	TechnicalCueTypeColor_bars   TechnicalCueType = "ColorBars"
	TechnicalCueTypeEnd_credits  TechnicalCueType = "EndCredits"
	TechnicalCueTypeBlack_frames TechnicalCueType = "BlackFrames"
)

Enum values for TechnicalCueType

type TestingData

type TestingData struct {
	// The assets used for testing.
	Assets []*Asset
	// If specified, Amazon Rekognition Custom Labels creates a testing dataset with an
	// 80/20 split of the training dataset.
	AutoCreate *bool
}

The dataset used for testing. Optionally, if AutoCreate is set, Amazon Rekognition Custom Labels creates a testing dataset using an 80/20 split of the training dataset.

type TestingDataResult

type TestingDataResult struct {
	// The testing dataset that was supplied for training.
	Input *TestingData
	// The subset of the dataset that was actually tested. Some images (assets) might
	// not be tested due to file formatting and other issues.
	Output *TestingData
}

A Sagemaker Groundtruth format manifest file representing the dataset used for testing.

type TextDetection

type TextDetection struct {
	// The identifier for the detected text. The identifier is only unique for a single
	// call to DetectText.
	Id *int32
	// The location of the detected text on the image. Includes an axis aligned coarse
	// bounding box surrounding the text and a finer grain polygon for more accurate
	// spatial information.
	Geometry *Geometry
	// The type of text that was detected.
	Type TextTypes
	// The word or line of text recognized by Amazon Rekognition.
	DetectedText *string
	// The Parent identifier for the detected text identified by the value of ID. If
	// the type of detected text is LINE, the value of ParentId is Null.
	ParentId *int32
	// The confidence that Amazon Rekognition has in the accuracy of the detected text
	// and the accuracy of the geometry points around the detected text.
	Confidence *float32
}

Information about a word or line of text detected by DetectText (). The DetectedText field contains the text that Amazon Rekognition detected in the image. Every word and line has an identifier (Id). Each word belongs to a line and has a parent identifier (ParentId) that identifies the line of text in which the word appears. The word Id is also an index for the word within a line of words. <p>For more information, see Detecting Text in the Amazon Rekognition Developer Guide.</p>

type TextDetectionResult

type TextDetectionResult struct {
	// Details about text detected in a video.
	TextDetection *TextDetection
	// The time, in milliseconds from the start of the video, that the text was
	// detected.
	Timestamp *int64
}

Information about text detected in a video. Incudes the detected text, the time in milliseconds from the start of the video that the text was detected, and where it was detected on the screen.

type TextTypes

type TextTypes string
const (
	TextTypesLine TextTypes = "LINE"
	TextTypesWord TextTypes = "WORD"
)

Enum values for TextTypes

type ThrottlingException

type ThrottlingException struct {
	Message *string

	Logref *string
	Code   *string
}

Amazon Rekognition is temporarily unable to process the request. Try your call again.

func (*ThrottlingException) Error

func (e *ThrottlingException) Error() string

func (*ThrottlingException) ErrorCode

func (e *ThrottlingException) ErrorCode() string

func (*ThrottlingException) ErrorFault

func (e *ThrottlingException) ErrorFault() smithy.ErrorFault

func (*ThrottlingException) ErrorMessage

func (e *ThrottlingException) ErrorMessage() string

func (*ThrottlingException) GetCode

func (e *ThrottlingException) GetCode() string

func (*ThrottlingException) GetLogref

func (e *ThrottlingException) GetLogref() string

func (*ThrottlingException) GetMessage

func (e *ThrottlingException) GetMessage() string

func (*ThrottlingException) HasCode

func (e *ThrottlingException) HasCode() bool

func (*ThrottlingException) HasLogref

func (e *ThrottlingException) HasLogref() bool

func (*ThrottlingException) HasMessage

func (e *ThrottlingException) HasMessage() bool

type TrainingData

type TrainingData struct {
	// A Sagemaker GroundTruth manifest file that contains the training images
	// (assets).
	Assets []*Asset
}

The dataset used for training.

type TrainingDataResult

type TrainingDataResult struct {
	// The images (assets) that were actually trained by Amazon Rekognition Custom
	// Labels.
	Output *TrainingData
	// The training assets that you supplied for training.
	Input *TrainingData
}

A Sagemaker Groundtruth format manifest file that represents the dataset used for training.

type UnindexedFace

type UnindexedFace struct {
	// An array of reasons that specify why a face wasn't indexed.
	//
	//     * EXTREME_POSE
	// - The face is at a pose that can't be detected. For example, the head is turned
	// too far away from the camera.
	//
	//     * EXCEEDS_MAX_FACES - The number of faces
	// detected is already higher than that specified by the MaxFaces input parameter
	// for IndexFaces.
	//
	//     * LOW_BRIGHTNESS - The image is too dark.
	//
	//     *
	// LOW_SHARPNESS - The image is too blurry.
	//
	//     * LOW_CONFIDENCE - The face was
	// detected with a low confidence.
	//
	//     * SMALL_BOUNDING_BOX - The bounding box
	// around the face is too small.
	Reasons []Reason
	// The structure that contains attributes of a face that IndexFacesdetected, but
	// didn't index.
	FaceDetail *FaceDetail
}

A face that IndexFaces () detected, but didn't index. Use the Reasons response attribute to determine why a face wasn't indexed.

type Video

type Video struct {
	// The Amazon S3 bucket name and file name for the video.
	S3Object *S3Object
}

Video file stored in an Amazon S3 bucket. Amazon Rekognition video start operations such as StartLabelDetection () use Video to specify a video for analysis. The supported file formats are .mp4, .mov and .avi.

type VideoJobStatus

type VideoJobStatus string
const (
	VideoJobStatusIn_progress VideoJobStatus = "IN_PROGRESS"
	VideoJobStatusSucceeded   VideoJobStatus = "SUCCEEDED"
	VideoJobStatusFailed      VideoJobStatus = "FAILED"
)

Enum values for VideoJobStatus

type VideoMetadata

type VideoMetadata struct {
	// Length of the video in milliseconds.
	DurationMillis *int64
	// Vertical pixel dimension of the video.
	FrameHeight *int64
	// Number of frames per second in the video.
	FrameRate *float32
	// Horizontal pixel dimension of the video.
	FrameWidth *int64
	// Format of the analyzed video. Possible values are MP4, MOV and AVI.
	Format *string
	// Type of compression used in the analyzed video.
	Codec *string
}

Information about a video that Amazon Rekognition analyzed. Videometadata is returned in every page of paginated responses from a Amazon Rekognition video operation.

type VideoTooLargeException

type VideoTooLargeException struct {
	Message *string

	Code   *string
	Logref *string
}

The file size or duration of the supplied media is too large. The maximum file size is 10GB. The maximum duration is 6 hours.

func (*VideoTooLargeException) Error

func (e *VideoTooLargeException) Error() string

func (*VideoTooLargeException) ErrorCode

func (e *VideoTooLargeException) ErrorCode() string

func (*VideoTooLargeException) ErrorFault

func (e *VideoTooLargeException) ErrorFault() smithy.ErrorFault

func (*VideoTooLargeException) ErrorMessage

func (e *VideoTooLargeException) ErrorMessage() string

func (*VideoTooLargeException) GetCode

func (e *VideoTooLargeException) GetCode() string

func (*VideoTooLargeException) GetLogref

func (e *VideoTooLargeException) GetLogref() string

func (*VideoTooLargeException) GetMessage

func (e *VideoTooLargeException) GetMessage() string

func (*VideoTooLargeException) HasCode

func (e *VideoTooLargeException) HasCode() bool

func (*VideoTooLargeException) HasLogref

func (e *VideoTooLargeException) HasLogref() bool

func (*VideoTooLargeException) HasMessage

func (e *VideoTooLargeException) HasMessage() bool

Source Files

enums.go errors.go types.go

Version
v0.1.0
Published
Sep 29, 2020
Platform
js/wasm
Imports
4 packages
Last checked
7 hours ago

Tools for package owners.