package types
import "github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
Index ¶
- type Algorithm
- type BatchPrediction
- type BatchPredictionFilterVariable
- type DataSource
- type DataSourceFilterVariable
- type DetailsAttributes
- type EntityStatus
- type Evaluation
- type EvaluationFilterVariable
- type IdempotentParameterMismatchException
- func (e *IdempotentParameterMismatchException) Error() string
- func (e *IdempotentParameterMismatchException) ErrorCode() string
- func (e *IdempotentParameterMismatchException) ErrorFault() smithy.ErrorFault
- func (e *IdempotentParameterMismatchException) ErrorMessage() string
- type InternalServerException
- func (e *InternalServerException) Error() string
- func (e *InternalServerException) ErrorCode() string
- func (e *InternalServerException) ErrorFault() smithy.ErrorFault
- func (e *InternalServerException) ErrorMessage() string
- type InvalidInputException
- func (e *InvalidInputException) Error() string
- func (e *InvalidInputException) ErrorCode() string
- func (e *InvalidInputException) ErrorFault() smithy.ErrorFault
- func (e *InvalidInputException) ErrorMessage() string
- type InvalidTagException
- func (e *InvalidTagException) Error() string
- func (e *InvalidTagException) ErrorCode() string
- func (e *InvalidTagException) ErrorFault() smithy.ErrorFault
- func (e *InvalidTagException) ErrorMessage() string
- type LimitExceededException
- func (e *LimitExceededException) Error() string
- func (e *LimitExceededException) ErrorCode() string
- func (e *LimitExceededException) ErrorFault() smithy.ErrorFault
- func (e *LimitExceededException) ErrorMessage() string
- type MLModel
- type MLModelFilterVariable
- type MLModelType
- type PerformanceMetrics
- type Prediction
- type PredictorNotMountedException
- func (e *PredictorNotMountedException) Error() string
- func (e *PredictorNotMountedException) ErrorCode() string
- func (e *PredictorNotMountedException) ErrorFault() smithy.ErrorFault
- func (e *PredictorNotMountedException) ErrorMessage() string
- type RDSDataSpec
- type RDSDatabase
- type RDSDatabaseCredentials
- type RDSMetadata
- type RealtimeEndpointInfo
- type RealtimeEndpointStatus
- type RedshiftDataSpec
- type RedshiftDatabase
- type RedshiftDatabaseCredentials
- type RedshiftMetadata
- type ResourceNotFoundException
- func (e *ResourceNotFoundException) Error() string
- func (e *ResourceNotFoundException) ErrorCode() string
- func (e *ResourceNotFoundException) ErrorFault() smithy.ErrorFault
- func (e *ResourceNotFoundException) ErrorMessage() string
- type S3DataSpec
- type SortOrder
- type Tag
- type TagLimitExceededException
- func (e *TagLimitExceededException) Error() string
- func (e *TagLimitExceededException) ErrorCode() string
- func (e *TagLimitExceededException) ErrorFault() smithy.ErrorFault
- func (e *TagLimitExceededException) ErrorMessage() string
- type TaggableResourceType
Types ¶
type Algorithm ¶
type Algorithm string
const ( AlgorithmSgd Algorithm = "sgd" )
Enum values for Algorithm
type BatchPrediction ¶
type BatchPrediction struct { // The ID of the DataSource that points to the group of observations to predict. BatchPredictionDataSourceId *string // The ID assigned to the BatchPrediction at creation. This value should be // identical to the value of the BatchPredictionID in the request. BatchPredictionId *string // Long integer type that is a 64-bit signed number. ComputeTime *int64 // The time that the BatchPrediction was created. The time is expressed in epoch // time. CreatedAt *time.Time // The AWS user account that invoked the BatchPrediction. The account type can be // either an AWS root account or an AWS Identity and Access Management (IAM) user // account. CreatedByIamUser *string // A timestamp represented in epoch time. FinishedAt *time.Time // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string // Long integer type that is a 64-bit signed number. InvalidRecordCount *int64 // The time of the most recent edit to the BatchPrediction. The time is expressed // in epoch time. LastUpdatedAt *time.Time // The ID of the MLModel that generated predictions for the BatchPrediction // request. MLModelId *string // A description of the most recent details about processing the batch prediction // request. Message *string // A user-supplied name or description of the BatchPrediction. Name *string // The location of an Amazon S3 bucket or directory to receive the operation // results. The following substrings are not allowed in the s3 key portion of the // outputURI field: ':', '//', '/./', '/../'. OutputUri *string // A timestamp represented in epoch time. StartedAt *time.Time // The status of the BatchPrediction. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request // to generate predictions for a batch of observations. // // * INPROGRESS - The // process is underway. // // * FAILED - The request to perform a batch prediction // did not run to completion. It is not usable. // // * COMPLETED - The batch // prediction process completed successfully. // // * DELETED - The BatchPrediction // is marked as deleted. It is not usable. Status EntityStatus // Long integer type that is a 64-bit signed number. TotalRecordCount *int64 }
Represents the output of a GetBatchPrediction operation. The content consists of the detailed metadata, the status, and the data file information of a Batch Prediction.
type BatchPredictionFilterVariable ¶
type BatchPredictionFilterVariable string
const ( BatchPredictionFilterVariableCreated_at BatchPredictionFilterVariable = "CreatedAt" BatchPredictionFilterVariableLast_updated_at BatchPredictionFilterVariable = "LastUpdatedAt" BatchPredictionFilterVariableStatus BatchPredictionFilterVariable = "Status" BatchPredictionFilterVariableName BatchPredictionFilterVariable = "Name" BatchPredictionFilterVariableIam_user BatchPredictionFilterVariable = "IAMUser" BatchPredictionFilterVariableMl_model_id BatchPredictionFilterVariable = "MLModelId" BatchPredictionFilterVariableDatasource_id BatchPredictionFilterVariable = "DataSourceId" BatchPredictionFilterVariableData_uri BatchPredictionFilterVariable = "DataURI" )
Enum values for BatchPredictionFilterVariable
type DataSource ¶
type DataSource struct { // The parameter is true if statistics need to be generated from the observation // data. ComputeStatistics *bool // Long integer type that is a 64-bit signed number. ComputeTime *int64 // The time that the DataSource was created. The time is expressed in epoch time. CreatedAt *time.Time // The AWS user account from which the DataSource was created. The account type can // be either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string // The location and name of the data in Amazon Simple Storage Service (Amazon S3) // that is used by a DataSource. DataLocationS3 *string // A JSON string that represents the splitting and rearrangement requirement used // when this DataSource was created. DataRearrangement *string // The total number of observations contained in the data files that the DataSource // references. DataSizeInBytes *int64 // The ID that is assigned to the DataSource during creation. DataSourceId *string // A timestamp represented in epoch time. FinishedAt *time.Time // The time of the most recent edit to the BatchPrediction. The time is expressed // in epoch time. LastUpdatedAt *time.Time // A description of the most recent details about creating the DataSource. Message *string // A user-supplied name or description of the DataSource. Name *string // The number of data files referenced by the DataSource. NumberOfFiles *int64 // The datasource details that are specific to Amazon RDS. RDSMetadata *RDSMetadata // Describes the DataSource details specific to Amazon Redshift. RedshiftMetadata *RedshiftMetadata // The Amazon Resource Name (ARN) of an AWS IAM Role // (https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts), // such as the following: arn:aws:iam::account:role/rolename. RoleARN *string // A timestamp represented in epoch time. StartedAt *time.Time // The current status of the DataSource. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request // to create a DataSource. // // * INPROGRESS - The creation process is underway. // // // * FAILED - The request to create a DataSource did not run to completion. It is // not usable. // // * COMPLETED - The creation process completed successfully. // // // * DELETED - The DataSource is marked as deleted. It is not usable. Status EntityStatus }
Represents the output of the GetDataSource operation. The content consists of the detailed metadata and data file information and the current status of the DataSource.
type DataSourceFilterVariable ¶
type DataSourceFilterVariable string
const ( DataSourceFilterVariableCreated_at DataSourceFilterVariable = "CreatedAt" DataSourceFilterVariableLast_updated_at DataSourceFilterVariable = "LastUpdatedAt" DataSourceFilterVariableStatus DataSourceFilterVariable = "Status" DataSourceFilterVariableName DataSourceFilterVariable = "Name" DataSourceFilterVariableData_uri DataSourceFilterVariable = "DataLocationS3" DataSourceFilterVariableIam_user DataSourceFilterVariable = "IAMUser" )
Enum values for DataSourceFilterVariable
type DetailsAttributes ¶
type DetailsAttributes string
const ( DetailsAttributesPredictive_model_type DetailsAttributes = "PredictiveModelType" DetailsAttributesAlgorithm DetailsAttributes = "Algorithm" )
Enum values for DetailsAttributes
type EntityStatus ¶
type EntityStatus string
const ( EntityStatusPending EntityStatus = "PENDING" EntityStatusInprogress EntityStatus = "INPROGRESS" EntityStatusFailed EntityStatus = "FAILED" EntityStatusCompleted EntityStatus = "COMPLETED" EntityStatusDeleted EntityStatus = "DELETED" )
Enum values for EntityStatus
type Evaluation ¶
type Evaluation struct { // Long integer type that is a 64-bit signed number. ComputeTime *int64 // The time that the Evaluation was created. The time is expressed in epoch time. CreatedAt *time.Time // The AWS user account that invoked the evaluation. The account type can be either // an AWS root account or an AWS Identity and Access Management (IAM) user account. CreatedByIamUser *string // The ID of the DataSource that is used to evaluate the MLModel. EvaluationDataSourceId *string // The ID that is assigned to the Evaluation at creation. EvaluationId *string // A timestamp represented in epoch time. FinishedAt *time.Time // The location and name of the data in Amazon Simple Storage Server (Amazon S3) // that is used in the evaluation. InputDataLocationS3 *string // The time of the most recent edit to the Evaluation. The time is expressed in // epoch time. LastUpdatedAt *time.Time // The ID of the MLModel that is the focus of the evaluation. MLModelId *string // A description of the most recent details about evaluating the MLModel. Message *string // A user-supplied name or description of the Evaluation. Name *string // Measurements of how well the MLModel performed, using observations referenced by // the DataSource. One of the following metrics is returned, based on the type of // the MLModel: // // * BinaryAUC: A binary MLModel uses the Area Under the Curve // (AUC) technique to measure performance. // // * RegressionRMSE: A regression // MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. // RMSE measures the difference between predicted and actual values for a single // variable. // // * MulticlassAvgFScore: A multiclass MLModel uses the F1 score // technique to measure performance. // // For more information about performance // metrics, please see the Amazon Machine Learning Developer Guide // (https://docs.aws.amazon.com/machine-learning/latest/dg). PerformanceMetrics *PerformanceMetrics // A timestamp represented in epoch time. StartedAt *time.Time // The status of the evaluation. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request // to evaluate an MLModel. // // * INPROGRESS - The evaluation is underway. // // * // FAILED - The request to evaluate an MLModel did not run to completion. It is not // usable. // // * COMPLETED - The evaluation process completed successfully. // // * // DELETED - The Evaluation is marked as deleted. It is not usable. Status EntityStatus }
Represents the output of GetEvaluation operation. The content consists of the detailed metadata and data file information and the current status of the Evaluation.
type EvaluationFilterVariable ¶
type EvaluationFilterVariable string
const ( EvaluationFilterVariableCreated_at EvaluationFilterVariable = "CreatedAt" EvaluationFilterVariableLast_updated_at EvaluationFilterVariable = "LastUpdatedAt" EvaluationFilterVariableStatus EvaluationFilterVariable = "Status" EvaluationFilterVariableName EvaluationFilterVariable = "Name" EvaluationFilterVariableIam_user EvaluationFilterVariable = "IAMUser" EvaluationFilterVariableMl_model_id EvaluationFilterVariable = "MLModelId" EvaluationFilterVariableDatasource_id EvaluationFilterVariable = "DataSourceId" EvaluationFilterVariableData_uri EvaluationFilterVariable = "DataURI" )
Enum values for EvaluationFilterVariable
type IdempotentParameterMismatchException ¶
A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.
func (*IdempotentParameterMismatchException) Error ¶
func (e *IdempotentParameterMismatchException) Error() string
func (*IdempotentParameterMismatchException) ErrorCode ¶
func (e *IdempotentParameterMismatchException) ErrorCode() string
func (*IdempotentParameterMismatchException) ErrorFault ¶
func (e *IdempotentParameterMismatchException) ErrorFault() smithy.ErrorFault
func (*IdempotentParameterMismatchException) ErrorMessage ¶
func (e *IdempotentParameterMismatchException) ErrorMessage() string
type InternalServerException ¶
An error on the server occurred when trying to process a request.
func (*InternalServerException) Error ¶
func (e *InternalServerException) Error() string
func (*InternalServerException) ErrorCode ¶
func (e *InternalServerException) ErrorCode() string
func (*InternalServerException) ErrorFault ¶
func (e *InternalServerException) ErrorFault() smithy.ErrorFault
func (*InternalServerException) ErrorMessage ¶
func (e *InternalServerException) ErrorMessage() string
type InvalidInputException ¶
An error on the client occurred. Typically, the cause is an invalid input value.
func (*InvalidInputException) Error ¶
func (e *InvalidInputException) Error() string
func (*InvalidInputException) ErrorCode ¶
func (e *InvalidInputException) ErrorCode() string
func (*InvalidInputException) ErrorFault ¶
func (e *InvalidInputException) ErrorFault() smithy.ErrorFault
func (*InvalidInputException) ErrorMessage ¶
func (e *InvalidInputException) ErrorMessage() string
type InvalidTagException ¶
type InvalidTagException struct { Message *string }
A submitted tag is invalid.
func (*InvalidTagException) Error ¶
func (e *InvalidTagException) Error() string
func (*InvalidTagException) ErrorCode ¶
func (e *InvalidTagException) ErrorCode() string
func (*InvalidTagException) ErrorFault ¶
func (e *InvalidTagException) ErrorFault() smithy.ErrorFault
func (*InvalidTagException) ErrorMessage ¶
func (e *InvalidTagException) ErrorMessage() string
type LimitExceededException ¶
The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as DataSource.
func (*LimitExceededException) Error ¶
func (e *LimitExceededException) Error() string
func (*LimitExceededException) ErrorCode ¶
func (e *LimitExceededException) ErrorCode() string
func (*LimitExceededException) ErrorFault ¶
func (e *LimitExceededException) ErrorFault() smithy.ErrorFault
func (*LimitExceededException) ErrorMessage ¶
func (e *LimitExceededException) ErrorMessage() string
type MLModel ¶
type MLModel struct { // The algorithm used to train the MLModel. The following algorithm is supported: // // // * SGD -- Stochastic gradient descent. The goal of SGD is to minimize the // gradient of the loss function. Algorithm Algorithm // Long integer type that is a 64-bit signed number. ComputeTime *int64 // The time that the MLModel was created. The time is expressed in epoch time. CreatedAt *time.Time // The AWS user account from which the MLModel was created. The account type can be // either an AWS root account or an AWS Identity and Access Management (IAM) user // account. CreatedByIamUser *string // The current endpoint of the MLModel. EndpointInfo *RealtimeEndpointInfo // A timestamp represented in epoch time. FinishedAt *time.Time // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string // The time of the most recent edit to the MLModel. The time is expressed in epoch // time. LastUpdatedAt *time.Time // The ID assigned to the MLModel at creation. MLModelId *string // Identifies the MLModel category. The following are the available types: // // * // REGRESSION - Produces a numeric result. For example, "What price should a house // be listed at?" // // * BINARY - Produces one of two possible results. For // example, "Is this a child-friendly web site?". // // * MULTICLASS - Produces one // of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk // trade?". MLModelType MLModelType // A description of the most recent details about accessing the MLModel. Message *string // A user-supplied name or description of the MLModel. Name *string // The score threshold for the MLModel. ScoreThreshold *float32 // The time of the most recent edit to the ScoreThreshold. The time is expressed in // epoch time. ScoreThresholdLastUpdatedAt *time.Time // Long integer type that is a 64-bit signed number. SizeInBytes *int64 // A timestamp represented in epoch time. StartedAt *time.Time // The current status of an MLModel. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request // to create an MLModel. // // * INPROGRESS - The creation process is underway. // // // * FAILED - The request to create an MLModel didn't run to completion. The model // isn't usable. // // * COMPLETED - The creation process completed successfully. // // // * DELETED - The MLModel is marked as deleted. It isn't usable. Status EntityStatus // The ID of the training DataSource. The CreateMLModel operation uses the // TrainingDataSourceId. TrainingDataSourceId *string // A list of the training parameters in the MLModel. The list is implemented as a // map of key-value pairs. The following is the current set of training // parameters: // // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the // model. Depending on the input data, the size of the model might affect its // performance. The value is an integer that ranges from 100000 to 2147483648. The // default value is 33554432. // // * sgd.maxPasses - The number of times that the // training process traverses the observations to build the MLModel. The value is // an integer that ranges from 1 to 100. The default value is 10. // // * // sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the // data improves a model's ability to find the optimal solution for a variety of // data types. The valid values are auto and none. The default value is none. // // // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which // controls overfitting the data by penalizing large coefficients. This parameter // tends to drive coefficients to zero, resulting in sparse feature set. If you use // this parameter, start by specifying a small value, such as 1.0E-08. The value is // a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 // normalization. This parameter can't be used when L2 is specified. Use this // parameter sparingly. // // * sgd.l2RegularizationAmount - The coefficient // regularization L2 norm, which controls overfitting the data by penalizing large // coefficients. This tends to drive coefficients to small, nonzero values. If you // use this parameter, start by specifying a small value, such as 1.0E-08. The // value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 // normalization. This parameter can't be used when L1 is specified. Use this // parameter sparingly. TrainingParameters map[string]*string }
Represents the output of a GetMLModel operation. The content consists of the detailed metadata and the current status of the MLModel.
type MLModelFilterVariable ¶
type MLModelFilterVariable string
const ( MLModelFilterVariableCreated_at MLModelFilterVariable = "CreatedAt" MLModelFilterVariableLast_updated_at MLModelFilterVariable = "LastUpdatedAt" MLModelFilterVariableStatus MLModelFilterVariable = "Status" MLModelFilterVariableName MLModelFilterVariable = "Name" MLModelFilterVariableIam_user MLModelFilterVariable = "IAMUser" MLModelFilterVariableTraining_datasource_id MLModelFilterVariable = "TrainingDataSourceId" MLModelFilterVariableReal_time_endpoint_status MLModelFilterVariable = "RealtimeEndpointStatus" MLModelFilterVariableMl_model_type MLModelFilterVariable = "MLModelType" MLModelFilterVariableAlgorithm MLModelFilterVariable = "Algorithm" MLModelFilterVariableTraining_data_uri MLModelFilterVariable = "TrainingDataURI" )
Enum values for MLModelFilterVariable
type MLModelType ¶
type MLModelType string
const ( MLModelTypeRegression MLModelType = "REGRESSION" MLModelTypeBinary MLModelType = "BINARY" MLModelTypeMulticlass MLModelType = "MULTICLASS" )
Enum values for MLModelType
type PerformanceMetrics ¶
type PerformanceMetrics struct { // Specific performance metric information. Properties map[string]*string }
Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel:
*
BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.
- RegressionRMSE: The regression MLModel uses the Root
Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
*
MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to measure performance.
For more information about performance metrics, please see the Amazon Machine Learning Developer Guide (https://docs.aws.amazon.com/machine-learning/latest/dg).
type Prediction ¶
type Prediction struct { // Provides any additional details regarding the prediction. Details map[string]*string // The prediction label for either a BINARY or MULTICLASSMLModel. PredictedLabel *string // Provides the raw classification score corresponding to each label. PredictedScores map[string]*float32 // The prediction value for REGRESSIONMLModel. PredictedValue *float32 }
The output from a Predict operation:
- Details - Contains the following
attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD
- PredictedLabel - Present for
either a BINARY or MULTICLASSMLModel request.
- PredictedScores - Contains
the raw classification score corresponding to each label.
- PredictedValue
- Present for a REGRESSIONMLModel request.
type PredictorNotMountedException ¶
type PredictorNotMountedException struct { Message *string }
The exception is thrown when a predict request is made to an unmounted MLModel.
func (*PredictorNotMountedException) Error ¶
func (e *PredictorNotMountedException) Error() string
func (*PredictorNotMountedException) ErrorCode ¶
func (e *PredictorNotMountedException) ErrorCode() string
func (*PredictorNotMountedException) ErrorFault ¶
func (e *PredictorNotMountedException) ErrorFault() smithy.ErrorFault
func (*PredictorNotMountedException) ErrorMessage ¶
func (e *PredictorNotMountedException) ErrorMessage() string
type RDSDataSpec ¶
type RDSDataSpec struct { // The AWS Identity and Access Management (IAM) credentials that are used connect // to the Amazon RDS database. // // This member is required. DatabaseCredentials *RDSDatabaseCredentials // Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database. // // This member is required. DatabaseInformation *RDSDatabase // The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute // Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to // an Amazon S3 task. For more information, see Role templates // (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. // // This member is required. ResourceRole *string // The Amazon S3 location for staging Amazon RDS data. The data retrieved from // Amazon RDS using SelectSqlQuery is stored in this location. // // This member is required. S3StagingLocation *string // The security group IDs to be used to access a VPC-based RDS DB instance. Ensure // that there are appropriate ingress rules set up to allow access to the RDS DB // instance. This attribute is used by Data Pipeline to carry out the copy // operation from Amazon RDS to an Amazon S3 task. // // This member is required. SecurityGroupIds []*string // The query that is used to retrieve the observation data for the DataSource. // // This member is required. SelectSqlQuery *string // The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more // information, see Role templates // (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. // // This member is required. ServiceRole *string // The subnet ID to be used to access a VPC-based RDS DB instance. This attribute // is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon // S3. // // This member is required. SubnetId *string // A JSON string that represents the splitting and rearrangement processing to be // applied to a DataSource. If the DataRearrangement parameter is not provided, all // of the input data is used to create the Datasource. There are multiple // parameters that control what data is used to create a datasource: // // * // percentBegin Use percentBegin to indicate the beginning of the range of the data // used to create the Datasource. If you do not include percentBegin and // percentEnd, Amazon ML includes all of the data when creating the datasource. // // // * percentEnd Use percentEnd to indicate the end of the range of the data used to // create the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement The // complement parameter instructs Amazon ML to use the data that is not included in // the range of percentBegin to percentEnd to create a datasource. The complement // parameter is useful if you need to create complementary datasources for training // and evaluation. To create a complementary datasource, use the same values for // percentBegin and percentEnd, along with the complement parameter. For example, // the following two datasources do not share any data, and can be used to train // and evaluate a model. The first datasource has 25 percent of the data, and the // second one has 75 percent of the data. Datasource for evaluation: // {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: // {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} // // * // strategy To change how Amazon ML splits the data for a datasource, use the // strategy parameter. The default value for the strategy parameter is sequential, // meaning that Amazon ML takes all of the data records between the percentBegin // and percentEnd parameters for the datasource, in the order that the records // appear in the input data. The following two DataRearrangement lines are examples // of sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} Datasource for training: // {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", // "complement":"true"}} To randomly split the input data into the proportions // indicated by the percentBegin and percentEnd parameters, set the strategy // parameter to random and provide a string that is used as the seed value for the // random data splitting (for example, you can use the S3 path to your data as the // random seed string). If you choose the random split strategy, Amazon ML assigns // each row of data a pseudo-random number between 0 and 100, and then selects the // rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value and // the byte offset as a seed, so changing the data results in a different split. // Any existing ordering is preserved. The random splitting strategy ensures that // variables in the training and evaluation data are distributed similarly. It is // useful in the cases where the input data may have an implicit sort order, which // would otherwise result in training and evaluation datasources containing // non-similar data records. The following two DataRearrangement lines are examples // of non-sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": {"randomSeed":"RANDOMSEED"}}} Datasource // for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": {"randomSeed":"RANDOMSEED"}, // "complement":"true"}} DataRearrangement *string // A JSON string that represents the schema for an Amazon RDS DataSource. The // DataSchema defines the structure of the observation data in the data file(s) // referenced in the DataSource. A DataSchema is not required if you specify a // DataSchemaUri Define your DataSchema as a series of key-value pairs. attributes // and excludedAttributeNames have an array of key-value pairs for their value. Use // the following format to define your DataSchema. { "version": "1.0", // "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2", // "targetAttributeName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": // true, "attributes": [ { "attributeName": "F1", "attributeType": "TEXT" }, { // "attributeName": "F2", "attributeType": "NUMERIC" }, { "attributeName": "F3", // "attributeType": "CATEGORICAL" }, { "attributeName": "F4", "attributeType": // "NUMERIC" }, { "attributeName": "F5", "attributeType": "CATEGORICAL" }, { // "attributeName": "F6", "attributeType": "TEXT" }, { "attributeName": "F7", // "attributeType": "WEIGHTED_INT_SEQUENCE" }, { "attributeName": "F8", // "attributeType": "WEIGHTED_STRING_SEQUENCE" } ], "excludedAttributeNames": [ // "F6" ] } DataSchema *string // The Amazon S3 location of the DataSchema. DataSchemaUri *string }
The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource.
type RDSDatabase ¶
type RDSDatabase struct { // The name of a database hosted on an RDS DB instance. // // This member is required. DatabaseName *string // The ID of an RDS DB instance. // // This member is required. InstanceIdentifier *string }
The database details of an Amazon RDS database.
type RDSDatabaseCredentials ¶
type RDSDatabaseCredentials struct { // The password to be used by Amazon ML to connect to a database on an RDS DB // instance. The password should have sufficient permissions to execute the // RDSSelectQuery query. // // This member is required. Password *string // The username to be used by Amazon ML to connect to database on an Amazon RDS // instance. The username should have sufficient permissions to execute an // RDSSelectSqlQuery query. // // This member is required. Username *string }
The database credentials to connect to a database on an RDS DB instance.
type RDSMetadata ¶
type RDSMetadata struct { // The ID of the Data Pipeline instance that is used to carry to copy data from // Amazon RDS to Amazon S3. You can use the ID to find details about the instance // in the Data Pipeline console. DataPipelineId *string // The database details required to connect to an Amazon RDS. Database *RDSDatabase // The username to be used by Amazon ML to connect to database on an Amazon RDS // instance. The username should have sufficient permissions to execute an // RDSSelectSqlQuery query. DatabaseUserName *string // The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to // carry out the copy task from Amazon RDS to Amazon S3. For more information, see // Role templates // (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. ResourceRole *string // The SQL query that is supplied during CreateDataSourceFromRDS. Returns only if // Verbose is true in GetDataSourceInput. SelectSqlQuery *string // The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more // information, see Role templates // (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. ServiceRole *string }
The datasource details that are specific to Amazon RDS.
type RealtimeEndpointInfo ¶
type RealtimeEndpointInfo struct { // The time that the request to create the real-time endpoint for the MLModel was // received. The time is expressed in epoch time. CreatedAt *time.Time // The current status of the real-time endpoint for the MLModel. This element can // have one of the following values: // // * NONE - Endpoint does not exist or was // previously deleted. // // * READY - Endpoint is ready to be used for real-time // predictions. // // * UPDATING - Updating/creating the endpoint. EndpointStatus RealtimeEndpointStatus // The URI that specifies where to send real-time prediction requests for the // MLModel. Note: The application must wait until the real-time endpoint is ready // before using this URI. EndpointUrl *string // The maximum processing rate for the real-time endpoint for MLModel, measured in // incoming requests per second. PeakRequestsPerSecond *int32 }
Describes the real-time endpoint information for an MLModel.
type RealtimeEndpointStatus ¶
type RealtimeEndpointStatus string
const ( RealtimeEndpointStatusNone RealtimeEndpointStatus = "NONE" RealtimeEndpointStatusReady RealtimeEndpointStatus = "READY" RealtimeEndpointStatusUpdating RealtimeEndpointStatus = "UPDATING" RealtimeEndpointStatusFailed RealtimeEndpointStatus = "FAILED" )
Enum values for RealtimeEndpointStatus
type RedshiftDataSpec ¶
type RedshiftDataSpec struct { // Describes AWS Identity and Access Management (IAM) credentials that are used // connect to the Amazon Redshift database. // // This member is required. DatabaseCredentials *RedshiftDatabaseCredentials // Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift // DataSource. // // This member is required. DatabaseInformation *RedshiftDatabase // Describes an Amazon S3 location to store the result set of the SelectSqlQuery // query. // // This member is required. S3StagingLocation *string // Describes the SQL Query to execute on an Amazon Redshift database for an Amazon // Redshift DataSource. // // This member is required. SelectSqlQuery *string // A JSON string that represents the splitting and rearrangement processing to be // applied to a DataSource. If the DataRearrangement parameter is not provided, all // of the input data is used to create the Datasource. There are multiple // parameters that control what data is used to create a datasource: // // * // percentBegin Use percentBegin to indicate the beginning of the range of the data // used to create the Datasource. If you do not include percentBegin and // percentEnd, Amazon ML includes all of the data when creating the datasource. // // // * percentEnd Use percentEnd to indicate the end of the range of the data used to // create the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement The // complement parameter instructs Amazon ML to use the data that is not included in // the range of percentBegin to percentEnd to create a datasource. The complement // parameter is useful if you need to create complementary datasources for training // and evaluation. To create a complementary datasource, use the same values for // percentBegin and percentEnd, along with the complement parameter. For example, // the following two datasources do not share any data, and can be used to train // and evaluate a model. The first datasource has 25 percent of the data, and the // second one has 75 percent of the data. Datasource for evaluation: // {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: // {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} // // * // strategy To change how Amazon ML splits the data for a datasource, use the // strategy parameter. The default value for the strategy parameter is sequential, // meaning that Amazon ML takes all of the data records between the percentBegin // and percentEnd parameters for the datasource, in the order that the records // appear in the input data. The following two DataRearrangement lines are examples // of sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} Datasource for training: // {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", // "complement":"true"}} To randomly split the input data into the proportions // indicated by the percentBegin and percentEnd parameters, set the strategy // parameter to random and provide a string that is used as the seed value for the // random data splitting (for example, you can use the S3 path to your data as the // random seed string). If you choose the random split strategy, Amazon ML assigns // each row of data a pseudo-random number between 0 and 100, and then selects the // rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value and // the byte offset as a seed, so changing the data results in a different split. // Any existing ordering is preserved. The random splitting strategy ensures that // variables in the training and evaluation data are distributed similarly. It is // useful in the cases where the input data may have an implicit sort order, which // would otherwise result in training and evaluation datasources containing // non-similar data records. The following two DataRearrangement lines are examples // of non-sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": {"randomSeed":"RANDOMSEED"}}} Datasource // for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": {"randomSeed":"RANDOMSEED"}, // "complement":"true"}} DataRearrangement *string // A JSON string that represents the schema for an Amazon Redshift DataSource. The // DataSchema defines the structure of the observation data in the data file(s) // referenced in the DataSource. A DataSchema is not required if you specify a // DataSchemaUri. Define your DataSchema as a series of key-value pairs. attributes // and excludedAttributeNames have an array of key-value pairs for their value. Use // the following format to define your DataSchema. { "version": "1.0", // "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2", // "targetAttributeName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": // true, "attributes": [ { "attributeName": "F1", "attributeType": "TEXT" }, { // "attributeName": "F2", "attributeType": "NUMERIC" }, { "attributeName": "F3", // "attributeType": "CATEGORICAL" }, { "attributeName": "F4", "attributeType": // "NUMERIC" }, { "attributeName": "F5", "attributeType": "CATEGORICAL" }, { // "attributeName": "F6", "attributeType": "TEXT" }, { "attributeName": "F7", // "attributeType": "WEIGHTED_INT_SEQUENCE" }, { "attributeName": "F8", // "attributeType": "WEIGHTED_STRING_SEQUENCE" } ], "excludedAttributeNames": [ // "F6" ] } DataSchema *string // Describes the schema location for an Amazon Redshift DataSource. DataSchemaUri *string }
Describes the data specification of an Amazon Redshift DataSource.
type RedshiftDatabase ¶
type RedshiftDatabase struct { // The ID of an Amazon Redshift cluster. // // This member is required. ClusterIdentifier *string // The name of a database hosted on an Amazon Redshift cluster. // // This member is required. DatabaseName *string }
Describes the database details required to connect to an Amazon Redshift database.
type RedshiftDatabaseCredentials ¶
type RedshiftDatabaseCredentials struct { // A password to be used by Amazon ML to connect to a database on an Amazon // Redshift cluster. The password should have sufficient permissions to execute a // RedshiftSelectSqlQuery query. The password should be valid for an Amazon // Redshift USER // (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). // // This member is required. Password *string // A username to be used by Amazon Machine Learning (Amazon ML)to connect to a // database on an Amazon Redshift cluster. The username should have sufficient // permissions to execute the RedshiftSelectSqlQuery query. The username should be // valid for an Amazon Redshift USER // (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). // // This member is required. Username *string }
Describes the database credentials for connecting to a database on an Amazon Redshift cluster.
type RedshiftMetadata ¶
type RedshiftMetadata struct { // A username to be used by Amazon Machine Learning (Amazon ML)to connect to a // database on an Amazon Redshift cluster. The username should have sufficient // permissions to execute the RedshiftSelectSqlQuery query. The username should be // valid for an Amazon Redshift USER // (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). DatabaseUserName *string // Describes the database details required to connect to an Amazon Redshift // database. RedshiftDatabase *RedshiftDatabase // The SQL query that is specified during CreateDataSourceFromRedshift. Returns // only if Verbose is true in GetDataSourceInput. SelectSqlQuery *string }
Describes the DataSource details specific to Amazon Redshift.
type ResourceNotFoundException ¶
A specified resource cannot be located.
func (*ResourceNotFoundException) Error ¶
func (e *ResourceNotFoundException) Error() string
func (*ResourceNotFoundException) ErrorCode ¶
func (e *ResourceNotFoundException) ErrorCode() string
func (*ResourceNotFoundException) ErrorFault ¶
func (e *ResourceNotFoundException) ErrorFault() smithy.ErrorFault
func (*ResourceNotFoundException) ErrorMessage ¶
func (e *ResourceNotFoundException) ErrorMessage() string
type S3DataSpec ¶
type S3DataSpec struct { // The location of the data file(s) used by a DataSource. The URI specifies a data // file or an Amazon Simple Storage Service (Amazon S3) directory or bucket // containing data files. // // This member is required. DataLocationS3 *string // A JSON string that represents the splitting and rearrangement processing to be // applied to a DataSource. If the DataRearrangement parameter is not provided, all // of the input data is used to create the Datasource. There are multiple // parameters that control what data is used to create a datasource: // // * // percentBegin Use percentBegin to indicate the beginning of the range of the data // used to create the Datasource. If you do not include percentBegin and // percentEnd, Amazon ML includes all of the data when creating the datasource. // // // * percentEnd Use percentEnd to indicate the end of the range of the data used to // create the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement The // complement parameter instructs Amazon ML to use the data that is not included in // the range of percentBegin to percentEnd to create a datasource. The complement // parameter is useful if you need to create complementary datasources for training // and evaluation. To create a complementary datasource, use the same values for // percentBegin and percentEnd, along with the complement parameter. For example, // the following two datasources do not share any data, and can be used to train // and evaluate a model. The first datasource has 25 percent of the data, and the // second one has 75 percent of the data. Datasource for evaluation: // {"splitting":{"percentBegin":0, "percentEnd":25}} Datasource for training: // {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}} // // * // strategy To change how Amazon ML splits the data for a datasource, use the // strategy parameter. The default value for the strategy parameter is sequential, // meaning that Amazon ML takes all of the data records between the percentBegin // and percentEnd parameters for the datasource, in the order that the records // appear in the input data. The following two DataRearrangement lines are examples // of sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} Datasource for training: // {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", // "complement":"true"}} To randomly split the input data into the proportions // indicated by the percentBegin and percentEnd parameters, set the strategy // parameter to random and provide a string that is used as the seed value for the // random data splitting (for example, you can use the S3 path to your data as the // random seed string). If you choose the random split strategy, Amazon ML assigns // each row of data a pseudo-random number between 0 and 100, and then selects the // rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value and // the byte offset as a seed, so changing the data results in a different split. // Any existing ordering is preserved. The random splitting strategy ensures that // variables in the training and evaluation data are distributed similarly. It is // useful in the cases where the input data may have an implicit sort order, which // would otherwise result in training and evaluation datasources containing // non-similar data records. The following two DataRearrangement lines are examples // of non-sequentially ordered training and evaluation datasources: Datasource for // evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": { "randomSeed":"RANDOMSEED"}}} Datasource // for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "strategyParams": {"randomSeed":"RANDOMSEED"}, // "complement":"true"}} DataRearrangement *string // A JSON string that represents the schema for an Amazon S3 DataSource. The // DataSchema defines the structure of the observation data in the data file(s) // referenced in the DataSource. You must provide either the DataSchema or the // DataSchemaLocationS3. Define your DataSchema as a series of key-value pairs. // attributes and excludedAttributeNames have an array of key-value pairs for their // value. Use the following format to define your DataSchema. { "version": "1.0", // "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2", // "targetAttributeName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": // true, "attributes": [ { "attributeName": "F1", "attributeType": "TEXT" }, { // "attributeName": "F2", "attributeType": "NUMERIC" }, { "attributeName": "F3", // "attributeType": "CATEGORICAL" }, { "attributeName": "F4", "attributeType": // "NUMERIC" }, { "attributeName": "F5", "attributeType": "CATEGORICAL" }, { // "attributeName": "F6", "attributeType": "TEXT" }, { "attributeName": "F7", // "attributeType": "WEIGHTED_INT_SEQUENCE" }, { "attributeName": "F8", // "attributeType": "WEIGHTED_STRING_SEQUENCE" } ], "excludedAttributeNames": [ // "F6" ] } DataSchema *string // Describes the schema location in Amazon S3. You must provide either the // DataSchema or the DataSchemaLocationS3. DataSchemaLocationS3 *string }
Describes the data specification of a DataSource.
type SortOrder ¶
type SortOrder string
Enum values for SortOrder
type Tag ¶
type Tag struct { // A unique identifier for the tag. Valid characters include Unicode letters, // digits, white space, _, ., /, =, +, -, %, and @. Key *string // An optional string, typically used to describe or define the tag. Valid // characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, // and @. Value *string }
A custom key-value pair associated with an ML object, such as an ML model.
type TagLimitExceededException ¶
type TagLimitExceededException struct { Message *string }
The limit in the number of tags has been exceeded.
func (*TagLimitExceededException) Error ¶
func (e *TagLimitExceededException) Error() string
func (*TagLimitExceededException) ErrorCode ¶
func (e *TagLimitExceededException) ErrorCode() string
func (*TagLimitExceededException) ErrorFault ¶
func (e *TagLimitExceededException) ErrorFault() smithy.ErrorFault
func (*TagLimitExceededException) ErrorMessage ¶
func (e *TagLimitExceededException) ErrorMessage() string
type TaggableResourceType ¶
type TaggableResourceType string
const ( TaggableResourceTypeBatch_prediction TaggableResourceType = "BatchPrediction" TaggableResourceTypeDatasource TaggableResourceType = "DataSource" TaggableResourceTypeEvaluation TaggableResourceType = "Evaluation" TaggableResourceTypeMl_model TaggableResourceType = "MLModel" )
Enum values for TaggableResourceType
Source Files ¶
- Version
- v0.27.0
- Published
- Oct 17, 2020
- Platform
- darwin/amd64
- Imports
- 3 packages
- Last checked
- 4 hours ago –
Tools for package owners.