package types
import "github.com/aws/aws-sdk-go-v2/service/frauddetector/types"
Index ¶
- type ATIMetricDataPoint
- type ATIModelPerformance
- type ATITrainingMetricsValue
- type AccessDeniedException
- func (e *AccessDeniedException) Error() string
- func (e *AccessDeniedException) ErrorCode() string
- func (e *AccessDeniedException) ErrorFault() smithy.ErrorFault
- func (e *AccessDeniedException) ErrorMessage() string
- type AggregatedLogOddsMetric
- type AggregatedVariablesImpactExplanation
- type AggregatedVariablesImportanceMetrics
- type AllowDenyList
- type AsyncJobStatus
- type BatchCreateVariableError
- type BatchGetVariableError
- type BatchImport
- type BatchPrediction
- type ConflictException
- func (e *ConflictException) Error() string
- func (e *ConflictException) ErrorCode() string
- func (e *ConflictException) ErrorFault() smithy.ErrorFault
- func (e *ConflictException) ErrorMessage() string
- type DataSource
- type DataType
- type DataValidationMetrics
- type Detector
- type DetectorVersionStatus
- type DetectorVersionSummary
- type Entity
- type EntityType
- type EvaluatedExternalModel
- type EvaluatedModelVersion
- type EvaluatedRule
- type Event
- type EventIngestion
- type EventOrchestration
- type EventPredictionSummary
- type EventType
- type EventVariableSummary
- type ExternalEventsDetail
- type ExternalModel
- type ExternalModelOutputs
- type ExternalModelSummary
- type FieldValidationMessage
- type FileValidationMessage
- type FilterCondition
- type IngestedEventStatistics
- type IngestedEventsDetail
- type IngestedEventsTimeWindow
- type InternalServerException
- func (e *InternalServerException) Error() string
- func (e *InternalServerException) ErrorCode() string
- func (e *InternalServerException) ErrorFault() smithy.ErrorFault
- func (e *InternalServerException) ErrorMessage() string
- type KMSKey
- type Label
- type LabelSchema
- type Language
- type ListUpdateMode
- type LogOddsMetric
- type MetricDataPoint
- type Model
- type ModelEndpointDataBlob
- type ModelEndpointStatus
- type ModelInputConfiguration
- type ModelInputDataFormat
- type ModelOutputConfiguration
- type ModelOutputDataFormat
- type ModelScores
- type ModelSource
- type ModelTypeEnum
- type ModelVersion
- type ModelVersionDetail
- type ModelVersionEvaluation
- type ModelVersionStatus
- type OFIMetricDataPoint
- type OFIModelPerformance
- type OFITrainingMetricsValue
- type Outcome
- type PredictionExplanations
- type PredictionTimeRange
- type ResourceNotFoundException
- func (e *ResourceNotFoundException) Error() string
- func (e *ResourceNotFoundException) ErrorCode() string
- func (e *ResourceNotFoundException) ErrorFault() smithy.ErrorFault
- func (e *ResourceNotFoundException) ErrorMessage() string
- type ResourceUnavailableException
- func (e *ResourceUnavailableException) Error() string
- func (e *ResourceUnavailableException) ErrorCode() string
- func (e *ResourceUnavailableException) ErrorFault() smithy.ErrorFault
- func (e *ResourceUnavailableException) ErrorMessage() string
- type Rule
- type RuleDetail
- type RuleExecutionMode
- type RuleResult
- type TFIMetricDataPoint
- type TFIModelPerformance
- type TFITrainingMetricsValue
- type Tag
- type ThrottlingException
- func (e *ThrottlingException) Error() string
- func (e *ThrottlingException) ErrorCode() string
- func (e *ThrottlingException) ErrorFault() smithy.ErrorFault
- func (e *ThrottlingException) ErrorMessage() string
- type TrainingDataSchema
- type TrainingDataSourceEnum
- type TrainingMetrics
- type TrainingMetricsV2
- type TrainingResult
- type TrainingResultV2
- type UncertaintyRange
- type UnlabeledEventsTreatment
- type ValidationException
- func (e *ValidationException) Error() string
- func (e *ValidationException) ErrorCode() string
- func (e *ValidationException) ErrorFault() smithy.ErrorFault
- func (e *ValidationException) ErrorMessage() string
- type Variable
- type VariableEntry
- type VariableImpactExplanation
- type VariableImportanceMetrics
Types ¶
type ATIMetricDataPoint ¶
type ATIMetricDataPoint struct { // The anomaly discovery rate. This metric quantifies the percentage of anomalies // that can be detected by the model at the selected score threshold. A lower score // threshold increases the percentage of anomalies captured by the model, but would // also require challenging a larger percentage of login events, leading to a // higher customer friction. Adr *float32 // The account takeover discovery rate. This metric quantifies the percentage of // account compromise events that can be detected by the model at the selected // score threshold. This metric is only available if 50 or more entities with // at-least one labeled account takeover event is present in the ingested dataset. Atodr *float32 // The challenge rate. This indicates the percentage of login events that the // model recommends to challenge such as one-time password, multi-factor // authentication, and investigations. Cr *float32 // The model's threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // contains filtered or unexported fields }
The Account Takeover Insights (ATI) model performance metrics data points.
type ATIModelPerformance ¶
type ATIModelPerformance struct { // The anomaly separation index (ASI) score. This metric summarizes the overall // ability of the model to separate anomalous activities from the normal behavior. // Depending on the business, a large fraction of these anomalous activities can be // malicious and correspond to the account takeover attacks. A model with no // separability power will have the lowest possible ASI score of 0.5, whereas the a // model with a high separability power will have the highest possible ASI score of // 1.0 Asi *float32 // contains filtered or unexported fields }
The Account Takeover Insights (ATI) model performance score.
type ATITrainingMetricsValue ¶
type ATITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []ATIMetricDataPoint // The model's overall performance scores. ModelPerformance *ATIModelPerformance // contains filtered or unexported fields }
The Account Takeover Insights (ATI) model training metric details.
type AccessDeniedException ¶
type AccessDeniedException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating Amazon Fraud Detector does not have the needed permissions. This can occur if you submit a request, such as PutExternalModel , that specifies a role that is not in your account.
func (*AccessDeniedException) Error ¶
func (e *AccessDeniedException) Error() string
func (*AccessDeniedException) ErrorCode ¶
func (e *AccessDeniedException) ErrorCode() string
func (*AccessDeniedException) ErrorFault ¶
func (e *AccessDeniedException) ErrorFault() smithy.ErrorFault
func (*AccessDeniedException) ErrorMessage ¶
func (e *AccessDeniedException) ErrorMessage() string
type AggregatedLogOddsMetric ¶
type AggregatedLogOddsMetric struct { // The relative importance of the variables in the list to the other event // variable. // // This member is required. AggregatedVariablesImportance *float32 // The names of all the variables. // // This member is required. VariableNames []string // contains filtered or unexported fields }
The log odds metric details.
Account Takeover Insights (ATI) model uses event variables from the login data you provide to continuously calculate a set of variables (aggregated variables) based on historical events. For example, your ATI model might calculate the number of times an user has logged in using the same IP address. In this case, event variables used to derive the aggregated variables are IP address and user .
type AggregatedVariablesImpactExplanation ¶
type AggregatedVariablesImpactExplanation struct { // The names of all the event variables that were used to derive the aggregated // variables. EventVariableNames []string // The raw, uninterpreted value represented as log-odds of the fraud. These // values are usually between -10 to +10, but range from -infinity to +infinity. // // - A positive value indicates that the variables drove the risk score up. // // - A negative value indicates that the variables drove the risk score down. LogOddsImpact *float32 // The relative impact of the aggregated variables in terms of magnitude on the // prediction scores. RelativeImpact *string // contains filtered or unexported fields }
The details of the impact of aggregated variables on the prediction score.
Account Takeover Insights (ATI) model uses the login data you provide to continuously calculate a set of variables (aggregated variables) based on historical events. For example, the model might calculate the number of times an user has logged in using the same IP address. In this case, event variables used to derive the aggregated variables are IP address and user .
type AggregatedVariablesImportanceMetrics ¶
type AggregatedVariablesImportanceMetrics struct { // List of variables' metrics. LogOddsMetrics []AggregatedLogOddsMetric // contains filtered or unexported fields }
The details of the relative importance of the aggregated variables.
Account Takeover Insights (ATI) model uses event variables from the login data you provide to continuously calculate a set of variables (aggregated variables) based on historical events. For example, your ATI model might calculate the number of times an user has logged in using the same IP address. In this case, event variables used to derive the aggregated variables are IP address and user .
type AllowDenyList ¶
type AllowDenyList struct { // The name of the list. // // This member is required. Name *string // The ARN of the list. Arn *string // The time the list was created. CreatedTime *string // The description of the list. Description *string // The time the list was last updated. UpdatedTime *string // The variable type of the list. VariableType *string // contains filtered or unexported fields }
The metadata of a list.
type AsyncJobStatus ¶
type AsyncJobStatus string
const ( AsyncJobStatusInProgressInitializing AsyncJobStatus = "IN_PROGRESS_INITIALIZING" AsyncJobStatusInProgress AsyncJobStatus = "IN_PROGRESS" AsyncJobStatusCancelInProgress AsyncJobStatus = "CANCEL_IN_PROGRESS" AsyncJobStatusCanceled AsyncJobStatus = "CANCELED" AsyncJobStatusComplete AsyncJobStatus = "COMPLETE" AsyncJobStatusFailed AsyncJobStatus = "FAILED" )
Enum values for AsyncJobStatus
func (AsyncJobStatus) Values ¶
func (AsyncJobStatus) Values() []AsyncJobStatus
Values returns all known values for AsyncJobStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type BatchCreateVariableError ¶
type BatchCreateVariableError struct { // The error code. Code int32 // The error message. Message *string // The name. Name *string // contains filtered or unexported fields }
Provides the error of the batch create variable API.
type BatchGetVariableError ¶
type BatchGetVariableError struct { // The error code. Code int32 // The error message. Message *string // The error name. Name *string // contains filtered or unexported fields }
Provides the error of the batch get variable API.
type BatchImport ¶
type BatchImport struct { // The ARN of the batch import job. Arn *string // Timestamp of when batch import job completed. CompletionTime *string // The name of the event type. EventTypeName *string // The number of records that failed to import. FailedRecordsCount *int32 // The reason batch import job failed. FailureReason *string // The ARN of the IAM role to use for this job request. IamRoleArn *string // The Amazon S3 location of your data file for batch import. InputPath *string // The ID of the batch import job. JobId *string // The Amazon S3 location of your output file. OutputPath *string // The number of records processed by batch import job. ProcessedRecordsCount *int32 // Timestamp of when the batch import job started. StartTime *string // The status of the batch import job. Status AsyncJobStatus // The total number of records in the batch import job. TotalRecordsCount *int32 // contains filtered or unexported fields }
The batch import job details.
type BatchPrediction ¶
type BatchPrediction struct { // The ARN of batch prediction job. Arn *string // Timestamp of when the batch prediction job completed. CompletionTime *string // The name of the detector. DetectorName *string // The detector version. DetectorVersion *string // The name of the event type. EventTypeName *string // The reason a batch prediction job failed. FailureReason *string // The ARN of the IAM role to use for this job request. IamRoleArn *string // The Amazon S3 location of your training file. InputPath *string // The job ID for the batch prediction. JobId *string // Timestamp of most recent heartbeat indicating the batch prediction job was // making progress. LastHeartbeatTime *string // The Amazon S3 location of your output file. OutputPath *string // The number of records processed by the batch prediction job. ProcessedRecordsCount *int32 // Timestamp of when the batch prediction job started. StartTime *string // The batch prediction status. Status AsyncJobStatus // The total number of records in the batch prediction job. TotalRecordsCount *int32 // contains filtered or unexported fields }
The batch prediction details.
type ConflictException ¶
type ConflictException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating there was a conflict during a delete operation.
func (*ConflictException) Error ¶
func (e *ConflictException) Error() string
func (*ConflictException) ErrorCode ¶
func (e *ConflictException) ErrorCode() string
func (*ConflictException) ErrorFault ¶
func (e *ConflictException) ErrorFault() smithy.ErrorFault
func (*ConflictException) ErrorMessage ¶
func (e *ConflictException) ErrorMessage() string
type DataSource ¶
type DataSource string
const ( DataSourceEvent DataSource = "EVENT" DataSourceModelScore DataSource = "MODEL_SCORE" DataSourceExternalModelScore DataSource = "EXTERNAL_MODEL_SCORE" )
Enum values for DataSource
func (DataSource) Values ¶
func (DataSource) Values() []DataSource
Values returns all known values for DataSource. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type DataType ¶
type DataType string
const ( DataTypeString DataType = "STRING" DataTypeInteger DataType = "INTEGER" DataTypeFloat DataType = "FLOAT" DataTypeBoolean DataType = "BOOLEAN" DataTypeDatetime DataType = "DATETIME" )
Enum values for DataType
func (DataType) Values ¶
Values returns all known values for DataType. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type DataValidationMetrics ¶
type DataValidationMetrics struct { // The field-specific model training validation messages. FieldLevelMessages []FieldValidationMessage // The file-specific model training data validation messages. FileLevelMessages []FileValidationMessage // contains filtered or unexported fields }
The model training data validation metrics.
type Detector ¶
type Detector struct { // The detector ARN. Arn *string // Timestamp of when the detector was created. CreatedTime *string // The detector description. Description *string // The detector ID. DetectorId *string // The name of the event type. EventTypeName *string // Timestamp of when the detector was last updated. LastUpdatedTime *string // contains filtered or unexported fields }
The detector.
type DetectorVersionStatus ¶
type DetectorVersionStatus string
const ( DetectorVersionStatusDraft DetectorVersionStatus = "DRAFT" DetectorVersionStatusActive DetectorVersionStatus = "ACTIVE" DetectorVersionStatusInactive DetectorVersionStatus = "INACTIVE" )
Enum values for DetectorVersionStatus
func (DetectorVersionStatus) Values ¶
func (DetectorVersionStatus) Values() []DetectorVersionStatus
Values returns all known values for DetectorVersionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type DetectorVersionSummary ¶
type DetectorVersionSummary struct { // The detector version description. Description *string // The detector version ID. DetectorVersionId *string // Timestamp of when the detector version was last updated. LastUpdatedTime *string // The detector version status. Status DetectorVersionStatus // contains filtered or unexported fields }
The summary of the detector version.
type Entity ¶
type Entity struct { // The entity ID. If you do not know the entityId , you can pass unknown , which is // areserved string literal. // // This member is required. EntityId *string // The entity type. // // This member is required. EntityType *string // contains filtered or unexported fields }
The entity details.
type EntityType ¶
type EntityType struct { // The entity type ARN. Arn *string // Timestamp of when the entity type was created. CreatedTime *string // The entity type description. Description *string // Timestamp of when the entity type was last updated. LastUpdatedTime *string // The entity type name. Name *string // contains filtered or unexported fields }
The entity type details.
type EvaluatedExternalModel ¶
type EvaluatedExternalModel struct { // Input variables use for generating predictions. InputVariables map[string]string // The endpoint of the external (Amazon Sagemaker) model. ModelEndpoint *string // Output variables. OutputVariables map[string]string // Indicates whether event variables were used to generate predictions. UseEventVariables *bool // contains filtered or unexported fields }
The details of the external (Amazon Sagemaker) model evaluated for generating
predictions.
type EvaluatedModelVersion ¶
type EvaluatedModelVersion struct { // Evaluations generated for the model version. Evaluations []ModelVersionEvaluation // The model ID. ModelId *string // The model type. // // Valid values: ONLINE_FRAUD_INSIGHTS | TRANSACTION_FRAUD_INSIGHTS ModelType *string // The model version. ModelVersion *string // contains filtered or unexported fields }
The model version evaluated for generating prediction.
type EvaluatedRule ¶
type EvaluatedRule struct { // Indicates whether the rule was evaluated. Evaluated *bool // The rule expression. Expression *string // The rule expression value. ExpressionWithValues *string // Indicates whether the rule matched. Matched *bool // The rule outcome. Outcomes []string // The rule ID. RuleId *string // The rule version. RuleVersion *string // contains filtered or unexported fields }
The details of the rule used for evaluating variable values.
type Event ¶
type Event struct { // The label associated with the event. CurrentLabel *string // The event entities. Entities []Entity // The event ID. EventId *string // The timestamp that defines when the event under evaluation occurred. The // timestamp must be specified using ISO 8601 standard in UTC. EventTimestamp *string // The event type. EventTypeName *string // Names of the event type's variables you defined in Amazon Fraud Detector to // represent data elements and their corresponding values for the event you are // sending for evaluation. EventVariables map[string]string // The timestamp associated with the label to update. The timestamp must be // specified using ISO 8601 standard in UTC. LabelTimestamp *string // contains filtered or unexported fields }
The event details.
type EventIngestion ¶
type EventIngestion string
const ( EventIngestionEnabled EventIngestion = "ENABLED" EventIngestionDisabled EventIngestion = "DISABLED" )
Enum values for EventIngestion
func (EventIngestion) Values ¶
func (EventIngestion) Values() []EventIngestion
Values returns all known values for EventIngestion. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type EventOrchestration ¶
type EventOrchestration struct { // Specifies if event orchestration is enabled through Amazon EventBridge. // // This member is required. EventBridgeEnabled *bool // contains filtered or unexported fields }
The event orchestration status.
type EventPredictionSummary ¶
type EventPredictionSummary struct { // The detector ID. DetectorId *string // The detector version ID. DetectorVersionId *string // The event ID. EventId *string // The timestamp of the event. EventTimestamp *string // The event type. EventTypeName *string // The timestamp when the prediction was generated. PredictionTimestamp *string // contains filtered or unexported fields }
Information about the summary of an event prediction.
type EventType ¶
type EventType struct { // The entity type ARN. Arn *string // Timestamp of when the event type was created. CreatedTime *string // The event type description. Description *string // The event type entity types. EntityTypes []string // If Enabled , Amazon Fraud Detector stores event data when you generate a // prediction and uses that data to update calculated variables in near real-time. // Amazon Fraud Detector uses this data, known as INGESTED_EVENTS , to train your // model and improve fraud predictions. EventIngestion EventIngestion // The event orchestration status. EventOrchestration *EventOrchestration // The event type event variables. EventVariables []string // Data about the stored events. IngestedEventStatistics *IngestedEventStatistics // The event type labels. Labels []string // Timestamp of when the event type was last updated. LastUpdatedTime *string // The event type name. Name *string // contains filtered or unexported fields }
The event type details.
type EventVariableSummary ¶
type EventVariableSummary struct { // The event variable name. Name *string // The event variable source. Source *string // The value of the event variable. Value *string // contains filtered or unexported fields }
Information about the summary of an event variable that was evaluated for
generating prediction.
type ExternalEventsDetail ¶
type ExternalEventsDetail struct { // The ARN of the role that provides Amazon Fraud Detector access to the data // location. // // This member is required. DataAccessRoleArn *string // The Amazon S3 bucket location for the data. // // This member is required. DataLocation *string // contains filtered or unexported fields }
Details for the external events data used for model version training.
type ExternalModel ¶
type ExternalModel struct { // The model ARN. Arn *string // Timestamp of when the model was last created. CreatedTime *string // The input configuration. InputConfiguration *ModelInputConfiguration // The role used to invoke the model. InvokeModelEndpointRoleArn *string // Timestamp of when the model was last updated. LastUpdatedTime *string // The Amazon SageMaker model endpoints. ModelEndpoint *string // The Amazon Fraud Detector status for the external model endpoint ModelEndpointStatus ModelEndpointStatus // The source of the model. ModelSource ModelSource // The output configuration. OutputConfiguration *ModelOutputConfiguration // contains filtered or unexported fields }
The Amazon SageMaker model.
type ExternalModelOutputs ¶
type ExternalModelOutputs struct { // The Amazon SageMaker model. ExternalModel *ExternalModelSummary // The fraud prediction scores from Amazon SageMaker model. Outputs map[string]string // contains filtered or unexported fields }
The fraud prediction scores from Amazon SageMaker model.
type ExternalModelSummary ¶
type ExternalModelSummary struct { // The endpoint of the Amazon SageMaker model. ModelEndpoint *string // The source of the model. ModelSource ModelSource // contains filtered or unexported fields }
The Amazon SageMaker model.
type FieldValidationMessage ¶
type FieldValidationMessage struct { // The message content. Content *string // The field name. FieldName *string // The message ID. Identifier *string // The message title. Title *string // The message type. Type *string // contains filtered or unexported fields }
The message details.
type FileValidationMessage ¶
type FileValidationMessage struct { // The message content. Content *string // The message title. Title *string // The message type. Type *string // contains filtered or unexported fields }
The message details.
type FilterCondition ¶
type FilterCondition struct { // A statement containing a resource property and a value to specify filter // condition. Value *string // contains filtered or unexported fields }
A conditional statement for filtering a list of past predictions.
type IngestedEventStatistics ¶
type IngestedEventStatistics struct { // The total size of the stored events. EventDataSizeInBytes *int64 // Timestamp of when the stored event was last updated. LastUpdatedTime *string // The oldest stored event. LeastRecentEvent *string // The newest stored event. MostRecentEvent *string // The number of stored events. NumberOfEvents *int64 // contains filtered or unexported fields }
Data about the stored events.
type IngestedEventsDetail ¶
type IngestedEventsDetail struct { // The start and stop time of the ingested events. // // This member is required. IngestedEventsTimeWindow *IngestedEventsTimeWindow // contains filtered or unexported fields }
The details of the ingested event.
type IngestedEventsTimeWindow ¶
type IngestedEventsTimeWindow struct { // Timestamp of the final ingested event. // // This member is required. EndTime *string // Timestamp of the first ingensted event. // // This member is required. StartTime *string // contains filtered or unexported fields }
The start and stop time of the ingested events.
type InternalServerException ¶
type InternalServerException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating an internal server error.
func (*InternalServerException) Error ¶
func (e *InternalServerException) Error() string
func (*InternalServerException) ErrorCode ¶
func (e *InternalServerException) ErrorCode() string
func (*InternalServerException) ErrorFault ¶
func (e *InternalServerException) ErrorFault() smithy.ErrorFault
func (*InternalServerException) ErrorMessage ¶
func (e *InternalServerException) ErrorMessage() string
type KMSKey ¶
type KMSKey struct { // The encryption key ARN. KmsEncryptionKeyArn *string // contains filtered or unexported fields }
The KMS key details.
type Label ¶
type Label struct { // The label ARN. Arn *string // Timestamp of when the event type was created. CreatedTime *string // The label description. Description *string // Timestamp of when the label was last updated. LastUpdatedTime *string // The label name. Name *string // contains filtered or unexported fields }
The label details.
type LabelSchema ¶
type LabelSchema struct { // The label mapper maps the Amazon Fraud Detector supported model classification // labels ( FRAUD , LEGIT ) to the appropriate event type labels. For example, if " // FRAUD " and " LEGIT " are Amazon Fraud Detector supported labels, this mapper // could be: {"FRAUD" => ["0"] , "LEGIT" => ["1"]} or {"FRAUD" => ["false"] , // "LEGIT" => ["true"]} or {"FRAUD" => ["fraud", "abuse"] , "LEGIT" => ["legit", // "safe"]} . The value part of the mapper is a list, because you may have multiple // label variants from your event type for a single Amazon Fraud Detector label. LabelMapper map[string][]string // The action to take for unlabeled events. // // - Use IGNORE if you want the unlabeled events to be ignored. This is // recommended when the majority of the events in the dataset are labeled. // // - Use FRAUD if you want to categorize all unlabeled events as “Fraud”. This is // recommended when most of the events in your dataset are fraudulent. // // - Use LEGIT if you want to categorize all unlabeled events as “Legit”. This is // recommended when most of the events in your dataset are legitimate. // // - Use AUTO if you want Amazon Fraud Detector to decide how to use the // unlabeled data. This is recommended when there is significant unlabeled events // in the dataset. // // By default, Amazon Fraud Detector ignores the unlabeled data. UnlabeledEventsTreatment UnlabeledEventsTreatment // contains filtered or unexported fields }
The label schema.
type Language ¶
type Language string
const ( LanguageDetectorpl Language = "DETECTORPL" )
Enum values for Language
func (Language) Values ¶
Values returns all known values for Language. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ListUpdateMode ¶
type ListUpdateMode string
const ( ListUpdateModeReplace ListUpdateMode = "REPLACE" ListUpdateModeAppend ListUpdateMode = "APPEND" ListUpdateModeRemove ListUpdateMode = "REMOVE" )
Enum values for ListUpdateMode
func (ListUpdateMode) Values ¶
func (ListUpdateMode) Values() []ListUpdateMode
Values returns all known values for ListUpdateMode. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type LogOddsMetric ¶
type LogOddsMetric struct { // The relative importance of the variable. For more information, see [Model variable importance]. // // [Model variable importance]: https://docs.aws.amazon.com/frauddetector/latest/ug/model-variable-importance.html // // This member is required. VariableImportance *float32 // The name of the variable. // // This member is required. VariableName *string // The type of variable. // // This member is required. VariableType *string // contains filtered or unexported fields }
The log odds metric details.
type MetricDataPoint ¶
type MetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events that // are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared to // all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 // contains filtered or unexported fields }
Model performance metrics data points.
type Model ¶
type Model struct { // The ARN of the model. Arn *string // Timestamp of when the model was created. CreatedTime *string // The model description. Description *string // The name of the event type. EventTypeName *string // Timestamp of last time the model was updated. LastUpdatedTime *string // The model ID. ModelId *string // The model type. ModelType ModelTypeEnum // contains filtered or unexported fields }
The model.
type ModelEndpointDataBlob ¶
type ModelEndpointDataBlob struct { // The byte buffer of the Amazon SageMaker model endpoint input data blob. ByteBuffer []byte // The content type of the Amazon SageMaker model endpoint input data blob. ContentType *string // contains filtered or unexported fields }
A pre-formed Amazon SageMaker model input you can include if your detector version includes an imported Amazon SageMaker model endpoint with pass-through input configuration.
type ModelEndpointStatus ¶
type ModelEndpointStatus string
const ( ModelEndpointStatusAssociated ModelEndpointStatus = "ASSOCIATED" ModelEndpointStatusDissociated ModelEndpointStatus = "DISSOCIATED" )
Enum values for ModelEndpointStatus
func (ModelEndpointStatus) Values ¶
func (ModelEndpointStatus) Values() []ModelEndpointStatus
Values returns all known values for ModelEndpointStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ModelInputConfiguration ¶
type ModelInputConfiguration struct { // The event variables. // // This member is required. UseEventVariables *bool // Template for constructing the CSV input-data sent to SageMaker. At // event-evaluation, the placeholders for variable-names in the template will be // replaced with the variable values before being sent to SageMaker. CsvInputTemplate *string // The event type name. EventTypeName *string // The format of the model input configuration. The format differs depending on // if it is passed through to SageMaker or constructed by Amazon Fraud Detector. Format ModelInputDataFormat // Template for constructing the JSON input-data sent to SageMaker. At // event-evaluation, the placeholders for variable names in the template will be // replaced with the variable values before being sent to SageMaker. JsonInputTemplate *string // contains filtered or unexported fields }
The Amazon SageMaker model input configuration.
type ModelInputDataFormat ¶
type ModelInputDataFormat string
const ( ModelInputDataFormatCsv ModelInputDataFormat = "TEXT_CSV" ModelInputDataFormatJson ModelInputDataFormat = "APPLICATION_JSON" )
Enum values for ModelInputDataFormat
func (ModelInputDataFormat) Values ¶
func (ModelInputDataFormat) Values() []ModelInputDataFormat
Values returns all known values for ModelInputDataFormat. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ModelOutputConfiguration ¶
type ModelOutputConfiguration struct { // The format of the model output configuration. // // This member is required. Format ModelOutputDataFormat // A map of CSV index values in the SageMaker response to the Amazon Fraud // Detector variables. CsvIndexToVariableMap map[string]string // A map of JSON keys in response from SageMaker to the Amazon Fraud Detector // variables. JsonKeyToVariableMap map[string]string // contains filtered or unexported fields }
Provides the Amazon Sagemaker model output configuration.
type ModelOutputDataFormat ¶
type ModelOutputDataFormat string
const ( ModelOutputDataFormatCsv ModelOutputDataFormat = "TEXT_CSV" ModelOutputDataFormatJsonlines ModelOutputDataFormat = "APPLICATION_JSONLINES" )
Enum values for ModelOutputDataFormat
func (ModelOutputDataFormat) Values ¶
func (ModelOutputDataFormat) Values() []ModelOutputDataFormat
Values returns all known values for ModelOutputDataFormat. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ModelScores ¶
type ModelScores struct { // The model version. ModelVersion *ModelVersion // The model's fraud prediction scores. Scores map[string]float32 // contains filtered or unexported fields }
The fraud prediction scores.
type ModelSource ¶
type ModelSource string
const ( ModelSourceSagemaker ModelSource = "SAGEMAKER" )
Enum values for ModelSource
func (ModelSource) Values ¶
func (ModelSource) Values() []ModelSource
Values returns all known values for ModelSource. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ModelTypeEnum ¶
type ModelTypeEnum string
const ( ModelTypeEnumOnlineFraudInsights ModelTypeEnum = "ONLINE_FRAUD_INSIGHTS" ModelTypeEnumTransactionFraudInsights ModelTypeEnum = "TRANSACTION_FRAUD_INSIGHTS" ModelTypeEnumAccountTakeoverInsights ModelTypeEnum = "ACCOUNT_TAKEOVER_INSIGHTS" )
Enum values for ModelTypeEnum
func (ModelTypeEnum) Values ¶
func (ModelTypeEnum) Values() []ModelTypeEnum
Values returns all known values for ModelTypeEnum. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ModelVersion ¶
type ModelVersion struct { // The model ID. // // This member is required. ModelId *string // The model type. // // This member is required. ModelType ModelTypeEnum // The model version number. // // This member is required. ModelVersionNumber *string // The model version ARN. Arn *string // contains filtered or unexported fields }
The model version.
type ModelVersionDetail ¶
type ModelVersionDetail struct { // The model version ARN. Arn *string // The timestamp when the model was created. CreatedTime *string // The external events data details. This will be populated if the // trainingDataSource for the model version is specified as EXTERNAL_EVENTS . ExternalEventsDetail *ExternalEventsDetail // The ingested events data details. This will be populated if the // trainingDataSource for the model version is specified as INGESTED_EVENTS . IngestedEventsDetail *IngestedEventsDetail // The timestamp when the model was last updated. LastUpdatedTime *string // The model ID. ModelId *string // The model type. ModelType ModelTypeEnum // The model version number. ModelVersionNumber *string // The status of the model version. Status *string // The training data schema. TrainingDataSchema *TrainingDataSchema // The model version training data source. TrainingDataSource TrainingDataSourceEnum // The training results. TrainingResult *TrainingResult // The training result details. The details include the relative importance of // the variables. TrainingResultV2 *TrainingResultV2 // contains filtered or unexported fields }
The details of the model version.
type ModelVersionEvaluation ¶
type ModelVersionEvaluation struct { // The evaluation score generated for the model version. EvaluationScore *string // The output variable name. OutputVariableName *string // The prediction explanations generated for the model version. PredictionExplanations *PredictionExplanations // contains filtered or unexported fields }
The model version evalutions.
type ModelVersionStatus ¶
type ModelVersionStatus string
const ( ModelVersionStatusActive ModelVersionStatus = "ACTIVE" ModelVersionStatusInactive ModelVersionStatus = "INACTIVE" ModelVersionStatusTrainingCancelled ModelVersionStatus = "TRAINING_CANCELLED" )
Enum values for ModelVersionStatus
func (ModelVersionStatus) Values ¶
func (ModelVersionStatus) Values() []ModelVersionStatus
Values returns all known values for ModelVersionStatus. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type OFIMetricDataPoint ¶
type OFIMetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events // that are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared // to all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 // contains filtered or unexported fields }
The Online Fraud Insights (OFI) model performance metrics data points.
type OFIModelPerformance ¶
type OFIModelPerformance struct { // The area under the curve (auc). This summarizes the total positive rate (tpr) // and false positive rate (FPR) across all possible model score thresholds. Auc *float32 // Indicates the range of area under curve (auc) expected from the OFI model. A // range greater than 0.1 indicates higher model uncertainity. UncertaintyRange *UncertaintyRange // contains filtered or unexported fields }
The Online Fraud Insights (OFI) model performance score.
type OFITrainingMetricsValue ¶
type OFITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []OFIMetricDataPoint // The model's overall performance score. ModelPerformance *OFIModelPerformance // contains filtered or unexported fields }
The Online Fraud Insights (OFI) model training metric details.
type Outcome ¶
type Outcome struct { // The outcome ARN. Arn *string // The timestamp when the outcome was created. CreatedTime *string // The outcome description. Description *string // The timestamp when the outcome was last updated. LastUpdatedTime *string // The outcome name. Name *string // contains filtered or unexported fields }
The outcome.
type PredictionExplanations ¶
type PredictionExplanations struct { // The details of the aggregated variables impact on the prediction score. // // Account Takeover Insights (ATI) model uses event variables from the login data // you provide to continuously calculate a set of variables (aggregated variables) // based on historical events. For example, your ATI model might calculate the // number of times an user has logged in using the same IP address. In this case, // event variables used to derive the aggregated variables are IP address and user . AggregatedVariablesImpactExplanations []AggregatedVariablesImpactExplanation // The details of the event variable's impact on the prediction score. VariableImpactExplanations []VariableImpactExplanation // contains filtered or unexported fields }
The prediction explanations that provide insight into how each event variable
impacted the model version's fraud prediction score.
type PredictionTimeRange ¶
type PredictionTimeRange struct { // The end time of the time period for when the predictions were generated. // // This member is required. EndTime *string // The start time of the time period for when the predictions were generated. // // This member is required. StartTime *string // contains filtered or unexported fields }
The time period for when the predictions were generated.
type ResourceNotFoundException ¶
type ResourceNotFoundException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating the specified resource was not found.
func (*ResourceNotFoundException) Error ¶
func (e *ResourceNotFoundException) Error() string
func (*ResourceNotFoundException) ErrorCode ¶
func (e *ResourceNotFoundException) ErrorCode() string
func (*ResourceNotFoundException) ErrorFault ¶
func (e *ResourceNotFoundException) ErrorFault() smithy.ErrorFault
func (*ResourceNotFoundException) ErrorMessage ¶
func (e *ResourceNotFoundException) ErrorMessage() string
type ResourceUnavailableException ¶
type ResourceUnavailableException struct { string *string // contains filtered or unexported fields }*
An exception indicating that the attached customer-owned (external) model threw an exception when Amazon Fraud Detector invoked the model.
func (*ResourceUnavailableException) Error ¶
func (e *ResourceUnavailableException) Error() string
func (*ResourceUnavailableException) ErrorCode ¶
func (e *ResourceUnavailableException) ErrorCode() string
func (*ResourceUnavailableException) ErrorFault ¶
func (e *ResourceUnavailableException) ErrorFault() smithy.ErrorFault
func (*ResourceUnavailableException) ErrorMessage ¶
func (e *ResourceUnavailableException) ErrorMessage() string
type Rule ¶
type Rule struct { // The detector for which the rule is associated. // // This member is required. DetectorId *string // The rule ID. // // This member is required. RuleId *string // The rule version. // // This member is required. RuleVersion *string // contains filtered or unexported fields }
A rule.
type RuleDetail ¶
type RuleDetail struct { // The rule ARN. Arn *string // The timestamp of when the rule was created. CreatedTime *string // The rule description. Description *string // The detector for which the rule is associated. DetectorId *string // The rule expression. Expression *string // The rule language. Language Language // Timestamp of the last time the rule was updated. LastUpdatedTime *string // The rule outcomes. Outcomes []string // The rule ID. RuleId *string // The rule version. RuleVersion *string // contains filtered or unexported fields }
The details of the rule.
type RuleExecutionMode ¶
type RuleExecutionMode string
const ( RuleExecutionModeAllMatched RuleExecutionMode = "ALL_MATCHED" RuleExecutionModeFirstMatched RuleExecutionMode = "FIRST_MATCHED" )
Enum values for RuleExecutionMode
func (RuleExecutionMode) Values ¶
func (RuleExecutionMode) Values() []RuleExecutionMode
Values returns all known values for RuleExecutionMode. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type RuleResult ¶
type RuleResult struct { // The outcomes of the matched rule, based on the rule execution mode. Outcomes []string // The rule ID that was matched, based on the rule execution mode. RuleId *string // contains filtered or unexported fields }
The rule results.
type TFIMetricDataPoint ¶
type TFIMetricDataPoint struct { // The false positive rate. This is the percentage of total legitimate events // that are incorrectly predicted as fraud. Fpr *float32 // The percentage of fraud events correctly predicted as fraudulent as compared // to all events predicted as fraudulent. Precision *float32 // The model threshold that specifies an acceptable fraud capture rate. For // example, a threshold of 500 means any model score 500 or above is labeled as // fraud. Threshold *float32 // The true positive rate. This is the percentage of total fraud the model // detects. Also known as capture rate. Tpr *float32 // contains filtered or unexported fields }
The performance metrics data points for Transaction Fraud Insights (TFI)
model.
type TFIModelPerformance ¶
type TFIModelPerformance struct { // The area under the curve (auc). This summarizes the total positive rate (tpr) // and false positive rate (FPR) across all possible model score thresholds. Auc *float32 // Indicates the range of area under curve (auc) expected from the TFI model. A // range greater than 0.1 indicates higher model uncertainity. UncertaintyRange *UncertaintyRange // contains filtered or unexported fields }
The Transaction Fraud Insights (TFI) model performance score.
type TFITrainingMetricsValue ¶
type TFITrainingMetricsValue struct { // The model's performance metrics data points. MetricDataPoints []TFIMetricDataPoint // The model performance score. ModelPerformance *TFIModelPerformance // contains filtered or unexported fields }
The Transaction Fraud Insights (TFI) model training metric details.
type Tag ¶
type Tag struct { // A tag key. // // This member is required. Key *string // A value assigned to a tag key. // // This member is required. Value *string // contains filtered or unexported fields }
A key and value pair.
type ThrottlingException ¶
type ThrottlingException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating a throttling error.
func (*ThrottlingException) Error ¶
func (e *ThrottlingException) Error() string
func (*ThrottlingException) ErrorCode ¶
func (e *ThrottlingException) ErrorCode() string
func (*ThrottlingException) ErrorFault ¶
func (e *ThrottlingException) ErrorFault() smithy.ErrorFault
func (*ThrottlingException) ErrorMessage ¶
func (e *ThrottlingException) ErrorMessage() string
type TrainingDataSchema ¶
type TrainingDataSchema struct { // The training data schema variables. // // This member is required. ModelVariables []string // The label schema. LabelSchema *LabelSchema // contains filtered or unexported fields }
The training data schema.
type TrainingDataSourceEnum ¶
type TrainingDataSourceEnum string
const ( TrainingDataSourceEnumExternalEvents TrainingDataSourceEnum = "EXTERNAL_EVENTS" TrainingDataSourceEnumIngestedEvents TrainingDataSourceEnum = "INGESTED_EVENTS" )
Enum values for TrainingDataSourceEnum
func (TrainingDataSourceEnum) Values ¶
func (TrainingDataSourceEnum) Values() []TrainingDataSourceEnum
Values returns all known values for TrainingDataSourceEnum. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type TrainingMetrics ¶
type TrainingMetrics struct { // The area under the curve. This summarizes true positive rate (TPR) and false // positive rate (FPR) across all possible model score thresholds. A model with no // predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0. Auc *float32 // The data points details. MetricDataPoints []MetricDataPoint // contains filtered or unexported fields }
The training metric details.
type TrainingMetricsV2 ¶
type TrainingMetricsV2 struct { // The Account Takeover Insights (ATI) model training metric details. Ati *ATITrainingMetricsValue // The Online Fraud Insights (OFI) model training metric details. Ofi *OFITrainingMetricsValue // The Transaction Fraud Insights (TFI) model training metric details. Tfi *TFITrainingMetricsValue // contains filtered or unexported fields }
The training metrics details.
type TrainingResult ¶
type TrainingResult struct { // The validation metrics. DataValidationMetrics *DataValidationMetrics // The training metric details. TrainingMetrics *TrainingMetrics // The variable importance metrics. VariableImportanceMetrics *VariableImportanceMetrics // contains filtered or unexported fields }
The training result details.
type TrainingResultV2 ¶
type TrainingResultV2 struct { // The variable importance metrics of the aggregated variables. // // Account Takeover Insights (ATI) model uses event variables from the login data // you provide to continuously calculate a set of variables (aggregated variables) // based on historical events. For example, your ATI model might calculate the // number of times an user has logged in using the same IP address. In this case, // event variables used to derive the aggregated variables are IP address and user . AggregatedVariablesImportanceMetrics *AggregatedVariablesImportanceMetrics // The model training data validation metrics. DataValidationMetrics *DataValidationMetrics // The training metric details. TrainingMetricsV2 *TrainingMetricsV2 // The variable importance metrics details. VariableImportanceMetrics *VariableImportanceMetrics // contains filtered or unexported fields }
The training result details.
type UncertaintyRange ¶
type UncertaintyRange struct { // The lower bound value of the area under curve (auc). // // This member is required. LowerBoundValue *float32 // The upper bound value of the area under curve (auc). // // This member is required. UpperBoundValue *float32 // contains filtered or unexported fields }
Range of area under curve (auc) expected from the model. A range greater than
0.1 indicates higher model uncertainity. A range is the difference between upper and lower bound of auc.
type UnlabeledEventsTreatment ¶
type UnlabeledEventsTreatment string
const ( UnlabeledEventsTreatmentIgnore UnlabeledEventsTreatment = "IGNORE" UnlabeledEventsTreatmentFraud UnlabeledEventsTreatment = "FRAUD" UnlabeledEventsTreatmentLegit UnlabeledEventsTreatment = "LEGIT" UnlabeledEventsTreatmentAuto UnlabeledEventsTreatment = "AUTO" )
Enum values for UnlabeledEventsTreatment
func (UnlabeledEventsTreatment) Values ¶
func (UnlabeledEventsTreatment) Values() []UnlabeledEventsTreatment
Values returns all known values for UnlabeledEventsTreatment. Note that this can be expanded in the future, and so it is only as up to date as the client.
The ordering of this slice is not guaranteed to be stable across updates.
type ValidationException ¶
type ValidationException struct { Message *string ErrorCodeOverride *string // contains filtered or unexported fields }
An exception indicating a specified value is not allowed.
func (*ValidationException) Error ¶
func (e *ValidationException) Error() string
func (*ValidationException) ErrorCode ¶
func (e *ValidationException) ErrorCode() string
func (*ValidationException) ErrorFault ¶
func (e *ValidationException) ErrorFault() smithy.ErrorFault
func (*ValidationException) ErrorMessage ¶
func (e *ValidationException) ErrorMessage() string
type Variable ¶
type Variable struct { // The ARN of the variable. Arn *string // The time when the variable was created. CreatedTime *string // The data source of the variable. DataSource DataSource // The data type of the variable. For more information see [Variable types]. // // [Variable types]: https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types DataType DataType // The default value of the variable. DefaultValue *string // The description of the variable. Description *string // The time when variable was last updated. LastUpdatedTime *string // The name of the variable. Name *string // The variable type of the variable. // // Valid Values: AUTH_CODE | AVS | BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | // BILLING_CITY | BILLING_COUNTRY | BILLING_NAME | BILLING_PHONE | BILLING_STATE | // BILLING_ZIP | CARD_BIN | CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | // FINGERPRINT | FRAUD_LABEL | FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | // PAYMENT_TYPE | PHONE_NUMBER | PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | // SHIPPING_ADDRESS_L2 | SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | // SHIPPING_PHONE | SHIPPING_STATE | SHIPPING_ZIP | USERAGENT VariableType *string // contains filtered or unexported fields }
The variable.
type VariableEntry ¶
type VariableEntry struct { // The data source of the variable. DataSource *string // The data type of the variable. DataType *string // The default value of the variable. DefaultValue *string // The description of the variable. Description *string // The name of the variable. Name *string // The type of the variable. For more information see [Variable types]. // // Valid Values: AUTH_CODE | AVS | BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | // BILLING_CITY | BILLING_COUNTRY | BILLING_NAME | BILLING_PHONE | BILLING_STATE | // BILLING_ZIP | CARD_BIN | CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | // FINGERPRINT | FRAUD_LABEL | FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | // PAYMENT_TYPE | PHONE_NUMBER | PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | // SHIPPING_ADDRESS_L2 | SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | // SHIPPING_PHONE | SHIPPING_STATE | SHIPPING_ZIP | USERAGENT // // [Variable types]: https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types VariableType *string // contains filtered or unexported fields }
A variable in the list of variables for the batch create variable request.
type VariableImpactExplanation ¶
type VariableImpactExplanation struct { // The event variable name. EventVariableName *string // The raw, uninterpreted value represented as log-odds of the fraud. These // values are usually between -10 to +10, but range from - infinity to + infinity. // // - A positive value indicates that the variable drove the risk score up. // // - A negative value indicates that the variable drove the risk score down. LogOddsImpact *float32 // The event variable's relative impact in terms of magnitude on the prediction // scores. The relative impact values consist of a numerical rating (0-5, 5 being // the highest) and direction (increased/decreased) impact of the fraud risk. RelativeImpact *string // contains filtered or unexported fields }
The details of the event variable's impact on the prediction score.
type VariableImportanceMetrics ¶
type VariableImportanceMetrics struct { // List of variable metrics. LogOddsMetrics []LogOddsMetric // contains filtered or unexported fields }
The variable importance metrics details.
Source Files ¶
- Version
- v1.36.2 (latest)
- Published
- Apr 3, 2025
- Platform
- linux/amd64
- Imports
- 3 packages
- Last checked
- 5 hours ago –
Tools for package owners.